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Heat Transfer

0.1 相似特征数
• Bi毕渥数

ℎ𝛿
𝜆
：固体导热热阻与表面换热热阻之比（越大代表对流换热程度越深）

• Fo傅里叶数
𝜏𝑎
𝑙2
：热扩散时间与特征时间之比（越大代表越接近终态）

• Ga伽利略数
𝑔𝐿3

𝜈2 ：重力与黏性力之比

• Gr格拉晓夫数
𝑔𝛽Δ𝑇𝐿3

𝜈2
：浮力与黏性力之比（越大代表有限空间自然对流越强）

• j因子
𝑁𝑢
𝑅𝑒𝑃𝑟13

：量纲为 1的表面传热系数（常用于制冷）

• Ja雅各布数
𝑐𝑝Δ𝑇

𝑟
：相变时显热与潜热之比（越大表示液膜过冷度越大）

• Kn克努森数
𝜆𝑓

𝑙
：平均自由程与特征长度之比（越大代表越真空）

• Le刘易斯数
𝑎
𝐷
：热扩散系数与浓度扩散系数之比

• Nu努塞尔数
ℎ𝑙
𝜆
：对流换热系数与导热系数之比（越大代表（强迫）对流越强）

• Pe佩克莱数𝑃𝑟𝑅𝑒：和 Re热类比，表征热湍流

• Pr普朗特数
𝜈
𝑎
：动力学黏度与热扩散系数之比（或流动边界层与热边界层厚度之比）（越大代表动量扩散较

热扩散更快，流动边界层厚度越大）

• Ra瑞利数
𝑔𝛽Δ𝑇𝐿3

𝜈𝑎
：浮力与热扩散、动量扩散乘积之比（越大代表大空间自然对流越强）

• Re雷诺数
𝑢𝑙
𝜈
：惯性力与黏性力之比（越大表示湍流程度越强）

• Sc施密特数
𝜈
𝐷
：动量扩散能力与浓度扩散能力之比

• Sh舍伍德数
ℎ𝑚𝑙
𝐷
：和 Nu浓度类比，表征浓度对流大小

• St斯坦顿数
𝑁𝑢
𝑅𝑒𝑃𝑟

：修正 Nu，量纲为 1的表面传热系数

0.2 定性温度
• 外掠平板/圆管

𝑡𝑚 =
𝑡𝑓 + 𝑡𝑤

2
(1)

• 管内强制对流
‣ 进出口温度不同

𝑡𝑚 = 𝑡𝑖 + 𝑡𝑜
2

(2)

‣ 等温，考察壁面传热

𝑡𝑚 =
𝑡𝑓 + 𝑡𝑤

2
(3)

• 相变传热
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‣ 潜热使用饱和温度𝑡𝑠
‣ 其他：

𝑡𝑚 = 𝑡𝑠 + 𝑡𝑤
2

(4)

1 换热基本方式
1.1 热传导(Conduction)
• 直接接触的物体，温度不同的部分中依靠分子、原子、自由电子等微粒热运动而进行的热量传递现象
• Fourier定律

Φ = −𝜆𝐴 𝑑𝑡
𝑑𝑥

(5)

𝑞 = Φ
𝐴

= −𝜆 𝑑𝑡
𝑑𝑥

(6)

‣ 热流量Φ
‣ 热流密度𝑞
‣ 导热面积𝐴
‣ 导热系数𝜆[𝑊/𝑚 ⋅ 𝐾]

• 一维稳态导热

𝑞 ∫
𝛿

0
𝑑𝑥 = −𝜆 ∫

𝑡

0
𝑑𝑡 (7)

⟹ 𝑞 = − 𝑡
𝛿/𝜆

(8)

‣ 导热热阻𝑅𝜆 = 𝛿/𝐴𝜆
‣ 单位导热热阻𝑅𝜆 = 𝛿/𝜆

1.2 热对流(Convection)
• 流体中温度不同的各部分，由于发生相对宏观运动而传递热量的现象

• 对流换热
‣ 无相变：强迫对流、自然对流
‣ 有相变：沸腾换热、凝结换热
‣ 特点：

– 导热＆对流同时存在
– 须有直接接触和相对运动及温度差

• 牛顿冷却公式

Φ = ℎ𝐴(𝑡𝑤 − 𝑡∞) (9)

𝑞 = Φ
𝐴

= ℎ(𝑡𝑤 − 𝑡∞) (10)

‣ 热流量Φ
‣ 热流密度𝑞
‣ 壁面面积𝐴
‣ 壁面温度𝑡𝑤, 流体温度𝑡𝑓 ∼ 𝑡∞
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‣ 表面(对流)传热系数ℎ[𝑊/(𝑚2 ⋅ 𝐾)]
‣ 单位对流换热热阻𝑟ℎ = 1/ℎ
‣ 对流换热热阻𝑅ℎ = 1/(ℎ𝐴)

1.3 热辐射
• 有热运动产生的，以电磁波形式传递能量的现象
• 特点：

‣ 高于0𝐾即可发生
‣ 可在真空传播
‣ 伴随能量形式转变
‣ 具有强烈方向性
‣ 辐射能与温度和波长均有关
‣ 发射辐射取决于温度的四次方

• 辐射换热 Stefan-Boltzmann Law:

Φ = 𝜀𝐴𝜎(𝑇 4
1 − 𝑇 4

2 ) (11)

𝑞 = 𝜀𝜎(𝑇 4
1 − 𝑇 4

2 ) (12)

‣ 热流量Φ
‣ 热流密度𝑞
‣ 黑体辐射表面面积𝐴
‣ 𝑇1, 𝑇2，辐射发射和接收方温度

‣ 斯忒藩修正系数（发射率）𝜀，也叫黑度，即绝对黑体𝜀 = 1
‣ 斯忒藩-玻尔兹曼常量𝜎
‣ 单位辐射换热热阻𝑟𝑟𝑎𝑑 = 1/(𝜀𝜎(𝑇 2

1 + 𝑇 2
2 )(𝑇1 + 𝑇2))

‣ 辐射换热热阻𝑅𝑟𝑎𝑑 = 1/(𝜀𝐴𝜎(𝑇 2
1 + 𝑇 2

2 )(𝑇1 + 𝑇2))

1.4 传热与传热系数
• 传热：壁面一侧的流体通过壁面将热量传递到另一侧流体内的过程

Fluid 1 Wall Fluid 2

图 1: 传热的定义

Φ =
𝐴(𝑡𝑓1 − 𝑡𝑓2)

𝑅ℎ1 + 𝑅𝜆 + 𝑅ℎ2
=

𝐴(𝑡𝑓1 − 𝑡𝑓2)
1
ℎ1

+ 𝛿
𝜆 + 1

ℎ2

= 𝐴𝑘(𝑡𝑓1 − 𝑡𝑓2)
(13)

• 𝑘[𝑊/𝑚2 ⋅ 𝐾]传热系数

2 导热理论与稳态导热计算
• 等温线、等温面

• 导热基本定律(Fourier’s law)：
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⃗𝑞 = −𝜆∇𝑇  or   ⃗𝑞 = − ̄𝝀̄ ⋅ ∇𝑇 (14)

𝜆金属 > 𝜆非金属, 𝜆𝑠 > 𝜆𝑙 > 𝜆𝑔 (15)

• 气体热导率
‣ 气体分子运动理论：常温常压下气体热导率为：

𝜆 = 1
3
𝑢̄𝜌𝑙𝑐𝑣 (16)

其中𝑙为气体分子两次碰撞间平均自由程 𝑢̄为气体分子运动的均方根速度

𝑇 ↑⇒ 𝜆 ↑，随𝑝变化不明显

• 液体热导率
‣ 主要靠晶格振动导热
‣ 大多数液体𝑇 ↑⇒ 𝜌 ↓⇒ 𝜆 ↓
‣ 𝑝 ↑⇒ 𝜆 ↑

• 固体热导率
‣ 纯金属：依靠自由电子的迁移和晶格的振动（主要为前者） 𝑇 ↑⇒ 𝜆 ↓
‣ 合金：依靠自由电子的迁移和晶格的振动（主要为后者） 𝑇 ↑⇒ 𝜆 ↑
‣ 非金属：依靠晶格振动导热 𝑇 ↑⇒ 𝜆 ↑ 𝜌 ↓,湿度 ↓⇒ 𝜆 ↑

• 导热微分方程：

𝜌𝑐𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝜆∇𝑇) + 𝑞𝑣 (17)

定常条件下：

𝜕𝑇
𝜕𝑡

= 𝜆
𝜌𝑐

Δ2𝑇 + 𝑞𝑣
𝜌𝑐

= 𝑎Δ2𝑇 + 𝑞𝑣
𝜌𝑐

(18)

𝑎[𝑚2/𝑠]热扩散率（导温系数）(Thermal diffusivity)

𝑎 = 𝜆
𝜌𝑐

(19)

• 非傅里叶导热过程
‣ 极短时间内极大热流密度的导热
‣ 极低温度下的导热

• 边界条件
‣ 第一类边界条件

已知导热体边界上的温度值

𝑇 |
𝑠

= 𝑇𝑤 (20)

‣ 第二类边界条件

已知导热体边界上热流密度的分布及变化规律【接触导热边界条件】

𝑞|
𝑠

= 𝑞𝑤 = −𝜆𝑑𝑇
𝑑𝑛

|
𝑛

= 𝑓( ⃗𝒓, 𝑡) (21)
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‣ 第三类边界条件

已知导热体边界上周围流体的温度以及表面传热系数【对流导热边界条件】

𝑞|
𝑠

= 𝑞𝑤 = −𝜆𝑑𝑇
𝑑𝑛

|
𝑤

= ℎ(𝑇𝑤 − 𝑇0) (22)

• 热阻分析

适用于一维、稳态、无内热源的情况

1. 平板

𝑞 =
𝑇𝑓1 − 𝑇𝑓2

1
ℎ1

+ ∑ 𝛿
𝜆

+ 1
ℎ2

(23)

2. 圆筒

𝑞𝑙 =
𝑇𝑓1 − 𝑇𝑓2

1
ℎ1𝜋𝑑1

+ ∑
𝑛

𝑖=1

1
2𝜋𝜆

ln(
𝑑𝑖+1
𝑑𝑖

) + 1
ℎ2𝜋𝑑𝑛+1

(24)

4. 变面积或变导热系数

Φ = −𝜆(𝑇 )𝐴(𝑥)𝑑𝑇
𝑑𝑥

(25)

Φ = −𝜆̄(𝑇1 − 𝑇2)

∫
2

1

𝑑𝑥
𝐴(𝑥)

(26)

5. 肋片传热

Φ =
𝑇𝑓1 − 𝑇𝑓2

1
ℎ1𝐴

+ 𝛿
𝜆𝐴

+ 1
ℎ2𝐴

(27)

增大传热量⇔减小热阻
• 导热热阻可忽略
• 增大对流导热系数ℎ1, ℎ2
• 增大传热面积

1. 等截面直肋

Φ𝑥 = Φ𝑥+𝑑𝑥 + Φ𝑑𝑥(Energy Conservation)

Φ𝑥 = −𝜆𝐴𝑐
𝑑𝑇
𝑑𝑥

(Fourier law) (28)

Φ𝑥+𝑑𝑥 = Φ𝑥 + 𝑑Φ𝑥
𝑑𝑥

𝑑𝑥 = Φ𝑥 − 𝜆𝐴𝑐
𝑑2𝑇
𝑑𝑥2 𝑑𝑥 (29)

Φ𝑑𝑥 = ℎ(𝑃𝑑𝑥)(𝑇 − 𝑇∞)(Fourier cooling formula) (30)

⟹ 𝑑2𝑇
𝑑𝑥2 − ℎ𝑃

𝜆𝐴𝑐
(𝑇 − 𝑇∞) (31)
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引入过余温度𝜃 = 𝑇 − 𝑇∞ 则有

𝑑2𝜃
𝑑𝑥2 = 𝑚2𝜃 (32)

边界条件：

B.C. =
{{
{
{{𝑥 = 0 ,  𝜃 = 𝜃0 = 𝑇0 − 𝑇∞

𝑥 = 𝐻 ,  𝑑𝜃
𝑑𝑥

= 0(忽略肋端散热)
(33)

解得：

𝜃 = 𝜃0
cosh(𝑚(𝐻 − 𝑥))

cosh(𝑚𝐻)
(34)

肋片效率

𝜂𝑓 = Φ
Φ0

(Φ0为假设整个肋表面处于肋基温度下的散热量) = tanh(𝑚𝐻)
𝑚𝐻

(35)

肋片效率曲线

𝜂𝑓 ∼ ( ℎ
𝜆𝐴𝐿

)
1
2

(𝐻)3
2 (36)

即𝜂𝑓随右式增大而减小

肋片散热总效率

𝜂𝑜 =
𝐴𝑟 + 𝜂𝑓𝐴𝑓

𝐴𝑟 + 𝐴𝑓
(37)

2. 环肋及三角形界面直肋

3. 通过接触面的导热

点接触/部分接触带来额外热阻

𝑟 = 𝛿𝐴
𝜆𝐴

+ 𝑟𝑐 + 𝛿𝐵
𝜆𝐵

(38)
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影响因素：

• 固体表面粗糙度
• 接触表面硬度匹配
• 接触面上挤压压力
• 空隙中的介质性质

3 非稳态导热
3.1 概念
• 定义

𝑇 = 𝑓( ⃗𝒓, 𝑡) (39)

• 分类
‣ 周期性非稳态导热
‣ 瞬态非稳态导热

• 温度分布

时域和场域共同决定

• 不同阶段
‣ 非正规阶段（温度分布主要受初始温度控制）
‣ 正规阶段（温度分布主要取决于边界条件及物性）

导热阶段：非正规⟶正规⟶新稳态

• 热量变化

如上述固体导热，经过一段时间后，进出口导热才相等

• 非稳态导热的导热微分方程

𝜌𝑐𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝜆∇𝑇) + Φ̇ (40)

求解方法：

• 分析解法：
‣ 分离变量法

7
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‣ 积分变换
‣ 拉普拉斯变化

• 近似分析法：
‣ 集总参数法
‣ 积分法

• 数值解法：
‣ 有限差分法
‣ 蒙特卡洛法
‣ 有限元法
‣ 分子动力学模拟

• 毕渥数

𝐵𝑖 = 导热热阻

对流换热热阻
= 𝑟𝜆

𝑟ℎ
= 𝛿/𝜆

1/ℎ
= 𝛿ℎ

𝜆
(41)

𝐵𝑖毕渥准则：

{
𝐵𝑖 ⟶ ∞, ⇒ 𝑟𝜆 ≫ 𝑟ℎ(忽略对流换热热阻)
𝐵𝑖 ⟶ 0, ⇒ 𝑟𝜆 ≪ 𝑟ℎ(忽略导热热阻)

(42)

3.2 集总参数法简化分析（零维非稳态导热分析）
• 定义：忽略物体内部导热热阻𝐵𝑖 ⟶ 0，温度分布𝑇 = 𝑓(𝑡)，即零维问题

ℎ𝐴(𝑇 − 𝑇∞) = −𝜌𝑉 𝑐𝑑𝑇
𝑑𝑡

(43)

𝑇 |
𝑡=0

= 𝑇0 (44)

过余温度表示：

{{
{{
{{
{

ℎ𝐴𝜃 = −𝜌𝑉 𝑐𝑑𝜃
𝑑𝑡

𝜃|
𝑡=0

= 𝜃0

(45)
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𝑑𝜃
𝜃

= − ℎ𝐴
𝜌𝑉 𝑐

𝑑𝑡

⇒ ln 𝜃
𝜃0

= − ℎ𝐴
𝜌𝑉 𝑐

𝑡

⇒ 𝜃
𝜃0

= 𝑇 − 𝑇∞
𝑇0 − 𝑇∞

= 𝑒− ℎ𝐴
𝜌𝑉 𝑐𝑡

⇒ 𝜃
𝜃0

= 𝑒−𝐵𝑖𝑣𝐹𝑜𝑣 = 𝑒− 𝑡
𝜏𝑐

(46)

其中

ℎ𝐴
𝜌𝑉 𝑐

𝑡 = ℎ𝑉
𝜆𝐴

⋅ 𝜆𝐴2

𝑉 2𝜌𝑐
𝑡 = ℎ(𝑉 /𝐴)

𝜆
⋅ 𝑎𝑡
(𝑉 /𝐴)2 = 𝐵𝑖𝑣𝐹𝑜𝑣 (47)

𝐵𝑖𝑣 = ℎ(𝑉 /𝐴)
𝜆

(48)

𝐹𝑜𝑣 = 𝑎𝑡
(𝑉 /𝐴)2 (49)

傅里叶数𝐹𝑜𝑣 定义：

𝐹𝑜 = 换热时间

边界热扰动扩散到𝑙2面积上所需要的时间
= 𝑡

𝑙2/𝑎
(50)

描述热扰动传播至物体内部深入情况（即物体各点温度接近周围介质温度的情况）

𝜏𝑐为时间常数，描述导热的温度变化速度（温度响应）

• 瞬态热流：

Φ(𝑡) = ℎ𝐴(𝑇 (𝑡) − 𝑇∞) = ℎ𝐴𝜃 = ℎ𝐴𝜃0𝑒
− 𝑡

𝜏𝑐 (51)

总热量

𝑄𝑟 = ∫
𝑡

0
Φ(𝜏)𝑑𝜏 = 𝜌𝑉 𝑐𝜃0(1 − 𝑒− 𝑡

𝜏𝑐 ) (52)

• 集总参数法判据
|𝜃 − 𝜃0|

𝜃0
< 5% ⟺ 𝐵𝑖𝑣 < 0.1𝑀
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3.3 一维非稳态导热的分析解
无限大平板半块平壁微分方程：

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

𝜕𝑇
𝜕𝑡

= 𝑎𝜕2𝑇
𝜕𝑥2 , (0 < 𝑥 < 𝛿,𝑡 > 0)

𝐼.𝐶. : 𝑇 |
𝑡=0

= 𝑇0

𝐵.𝐶. :

{{
{{
{{
{{
{{
{𝜕𝑇

𝜕𝑥
|
𝑥=0

= 0

−𝜆𝜕𝑇
𝜕𝑥

|
𝑥=𝛿

= ℎ(𝑇 − 𝑇∞)

(53)

过余温度表示：

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

𝜕𝜃
𝜕𝑡

= 𝑎𝜕2𝜃
𝜕𝑥2 , (0 < 𝑥 < 𝛿,𝑡 > 0)

𝐼.𝐶. : 𝜃|
𝑡=0

= 𝜃0

𝐵.𝐶. :

{{
{{
{{
{{
{{
{𝜕𝜃

𝜕𝑥
|
𝑥=0

= 0

−𝜆𝜕𝜃
𝜕𝑥

|
𝑥=𝛿

= ℎ𝜃

(54)

分析解：

10



Institute of Refrigeration and Cryogenic

𝜃(𝑥, 𝑡)
𝜃0

= ∑
∞

𝑛=1

2 sin(𝛽𝑛𝛿) cos(𝛽𝑛𝑥)
𝛽𝑛𝛿 + sin(𝛽𝑛𝛿) cos(𝛽𝑛𝛿)

𝑒−𝛽2
𝑛𝑎𝑡

令𝜇𝑛 = 𝛽𝑛𝛿
𝜃(𝑥, 𝑡)

𝜃0
= ∑

∞

𝑛=1

2 sin(𝜇𝑛)
𝜇𝑛 + sin(𝜇𝑛) cos(𝜇𝑛)

cos(𝜇𝑛
𝑥
𝛿
)𝑒−𝜇2

𝑛
𝑎𝑡
𝛿2

𝜃(𝑥, 𝑡)
𝜃0

= 𝑓(𝐵𝑖, 𝐹𝑜, 𝑥
𝛿
)

(55)

毕渥准则数表示： ctg 𝜇𝑛 = 𝜇𝑛
ℎ𝛿/𝜆 = 𝜇𝑛

𝐵𝑖

3.3.1 正规状况简化
无限大平板𝐹𝑜 = 𝑎𝑡

𝛿2  𝐹𝑜 ≥ 0.2，则取解为级数的首项（误差小于 1%）

𝜃(𝑥, 𝑡)
𝜃0

= 2 sin(𝜇1)
𝜇1 + sin(𝜇1) cos(𝜇1)

cos(𝜇1
𝑥
𝛿
)𝑒−𝜇2

1𝐹𝑜 (56)

𝜃(𝑥, 𝑡)
𝜃(0, 𝑡)

= cos(𝜇1
𝑥
𝛿
) (57)

𝑄
𝑄0

=
𝜌𝑐 ∫

𝑉
[𝑇 (𝑥, 0) − 𝑇 (𝑥, 𝑡)]𝑑𝑉

𝜌𝑐𝑉 (𝑇 (𝑥, 0) − 𝑇 (𝑥, ∞))
= 1 − 1

𝑉
∫

𝑉
𝑇 (𝑥, 𝑡) − 𝑇 (𝑥, ∞)

𝑇 (𝑥, 0) − 𝑇 (𝑥, ∞)
= 1 −

̄𝜃
𝜃0

(58)

• 拟合公式

11
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• 线算图法

—— 诺谟图 适用于𝐹𝑜 > 0.2及较大𝐵𝑖（即第一类或第三类边界条件加热冷却过程）

𝜃
𝜃0

= 𝜃
𝜃𝑚

⋅ 𝜃𝑚
𝜃0

(59)

𝜃
𝜃𝑚

= 𝑓(𝐵𝑖, 𝑥
𝛿
)

𝜃𝑚
𝜃0

= 𝑓(𝐹𝑜, 𝐵𝑖)
(60)

3.4 二维及三维非稳态导热

3.5 半无限大物体

4 导热问题的数值解法
导热三种基本方法：

• 理论分析法
• 数值计算法
• 实验法

数值解法：

• 有限差分法（Finite-difference）
• 有限元法（finite-element）
• 边界元法（boundary-element）
• 分子动力学模拟（MD）

4.1 建立节点

4.2 建立离散方程
• Taylor级数展开

𝑇𝑚+1 = 𝑇𝑚 + 𝜕𝑇
𝜕𝑥 Δ𝑥 + 𝜕2𝑇

𝜕𝑥2
(Δ𝑥)2

2! + …

𝑇𝑚−1 = 𝑇𝑚 − 𝜕𝑇
𝜕𝑥 Δ𝑥 + 𝜕2𝑇

𝜕𝑥2
(Δ𝑥)2

2! − …

↓保留前两阶小项

𝑇𝑚+1 + 𝑇𝑚−1 − 2𝑇𝑚 = 𝜕2𝑇
𝜕𝑥2

(Δ𝑥)2

2!

𝑇𝑚+1 − 𝑇𝑚−1 = 2𝜕𝑇
𝜕𝑥 Δ𝑥

12
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即可得到一阶导数及二阶导数的离散差分表达式

• 多项式拟合
• 控制容积积分
• 控制容积平衡（热平衡）

Φ𝑟 = Φ𝑣 + Φ𝑖 − Φ𝑜

收敛准则 一般采用线性收敛准则

|𝑇 (i+1) − 𝑇 (i)| ≤ 𝜀 (61)

5 对流传热
5.1 理论基础
• 定义： 流体流经固体时流体与固体表面之间的热量传递现象（导热+热对流）

• 实例：暖气管道；电子器件冷却；电风扇

5.1.1 特点：
• 导热与热对流同时存在的复杂热传递过程
• 须有流体避免直接接触、温差及宏观运动
• 流体紧贴壁面处存在速度梯度很大的边界层（及温度边界层）

5.1.2 基本计算式：
• 牛顿冷却公式

Φ = ℎ𝐴(𝑇𝑤 − 𝑇∞) (62)

𝜑 = ℎ(𝑇𝑤 − 𝑇∞) (63)

• 表面传热系数

ℎ = Φ
𝐴(𝑇𝑤 − 𝑇∞)

(64)

• 研究对流传热方法
‣ 分析法
‣ 实验法
‣ 比拟法
‣ 数值法：

5.1.3 对流传热分类及影响因素
• 流动起因：

‣ 自然对流（Natural/Free Convection）：流体因各部分温度不同而引起的密度差异所产生的流动ℎ𝑛
‣ 强迫对流（Forced Convection）：由外力作用所产生的流动ℎ𝑓
‣ ℎ𝑓 > ℎ𝑛

• 流动状态：
‣ 层流（Laminar）：整个流场呈一簇互相平行的流线ℎlami
‣ 湍流（Turbulence）：流体质点做复杂无规则的运动ℎturb

• 流动有无相变：
‣ 单相换热（Single phase heat transfer）：
‣ 相变换热（Phase change heat transfer）：凝结、沸腾、升华、凝固、熔化

• 换热表面的几何因素：

13
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‣ 内部流动：管内或槽内
‣ 外部流动：外掠平板、圆管、管束

• 流体的热物理性质：
‣ 热导率𝜆,𝜆 ↑⇒ ℎ ↑ (Less interface heat conduction)
‣ 密度𝜌, 𝜌 ↑⇒ ℎ ↑ (Carrying more energy)
‣ 比热容𝑐, 𝑐 ↑⇒ ℎ ↑ (Carrying more energy)
‣ 动力粘度𝜇, 𝜇 ↑⇒ ℎ ↓ (Viscosity slowing flowing)
‣ 运动粘度𝜈
‣ 体膨胀系数𝛼, 𝛼 ↑⇒ ℎ ↑ (Enhancing Natural Convection)

5.1.4 微分方程式：

• 流体紧贴壁面层速度为零，只存在导热

𝑞𝑤,𝑥 = −𝜆(𝜕𝑇
𝜕𝑦

)
𝑤,𝑥

(65)

• 对流表面传热系数：

ℎ𝑥 = − 𝜆
𝑇𝑤 − 𝑇∞

(𝜕𝑇
𝜕𝑦

)
𝑤,𝑥

(66)

𝜆 ⇐热物性

𝑇𝑤 − 𝑇∞ ⇐温差

(𝜕𝑇
𝜕𝑦 )

𝑤,𝑥
⇐温度场⇐流场
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5.2 数学描述

5.2.1 连续性方程
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑽 ) = 0 (67)

稳态定常无压缩：

∇ ⋅ 𝑽 = 0 (68)

5.2.2 动量守恒方程
𝜕
𝜕𝑡

(𝜌𝑽 ) + 𝑽 ⋅ ∇(𝜌𝑽 ) = 𝜌𝒇 − ∇𝑝 + 𝜇∇2𝑽 + 1
3
𝜇∇(∇ ⋅ 𝑽 ) (69)

定常无压缩无扩散粘度：

𝜌(𝜕𝑽
𝜕𝑡

+ 𝑽 ⋅ ∇𝑽 ) = 𝜌𝒇 − ∇𝑝 + 𝜇∇2𝑽 (70)

稳态流动：

𝜕𝑽
𝜕𝑡

= 0 (71)

仅重力场：

𝒇 = 𝒈 (72)

5.2.3 能量守恒方程：
定常条件下不考虑耗散、无热源：

𝜕𝑇
𝜕𝑡

+ 𝑽 ⋅ ∇𝑇 = 𝑎∇2𝑇 (73)

5.2.4 经典方程组（定常、无内热源、不可压缩牛顿流体）

{{
{{
{{
{{
{{
{{
{{
{∇ ⋅ 𝑽 = 0

𝜕𝑽
𝜕𝑡

+ 𝑽 ⋅ ∇𝑽 = 𝒇 − 1
𝜌
∇𝑝 + 𝜈∇2𝑽

𝜕𝑇
𝜕𝑡

+ 𝑽 ⋅ ∇𝑇 = 𝑎∇2𝑇

(74)

5.3 边界层型对流传热问题数学描述
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5.3.1 边界层分类
• 流动边界层： 由于粘性作用，流体流速在靠近壁面处随离壁面的距离的缩短而逐渐降低；在贴壁处被滞止，处
于无滑移状态

• 热边界层： 当壁面与流体间有温差时，会产生温度梯度很大的温度边界层

5.3.2 流动边界层：
• 边界层区：粘性主导作用，使用 N-S方程描述
• 主流区：速度梯度为 0，可视为无粘理想流体，使用欧拉方程描述

图 13: 外掠平板流动边界层形成

湍流边界层：

• 粘性底层（层流底层）：粘性力绝对主导，保持层流特征，具有最大速度梯度

5.3.3 热边界层：

图 14: 平板热边界层

流动边界层与热边界层的关系

𝛿𝑡
𝛿

≈ 𝑃𝑟−1
3 (Laminar,0.6 ≤ 𝑃𝑟 ≤ 50) (75)
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5.3.4 边界层换热微分方程组

{
{{
{{
{{
{
{{
{{
{{
{𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0

𝑢𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

= −1
𝜌

𝜕𝑝
𝜕𝑥

+ 𝜈𝜕2𝑢
𝜕𝑦2

𝑢𝜕𝑇
𝜕𝑥

+ 𝑣𝜕𝑇
𝜕𝑦

= 𝑎𝜕2𝑇
𝜕𝑦2

(76)

其中

−1
𝜌

𝜕𝑝
𝜕𝑥

= 𝑢∞
𝜕𝑢∞
𝜕𝑥

= 0(if 𝜕𝑢∞
𝜕𝑥

= 0) (77)

5.4 流体外掠平板传热层流分析解及类比法
• 边界条件

{𝑦 = 0 :  𝑢 = 0 𝑣 = 0 𝑇 = 𝑇𝑤
𝑦 = 𝛿 :  𝑢 = 𝑢∞ 𝑣 = 𝑣𝛿 𝑇 = 𝑇∞

(78)

求解可得:
• 努塞尔数（Nusselt Number）

ℎ𝑥 = 0.332𝜆
𝑥

(𝑢∞𝑥
𝜈

)
1
2 (𝜈

𝑎
)

1
3

⇒ ℎ𝑥𝑥
𝜆

= 0.332(𝑢∞𝑥
𝜈

)
1
2 (𝜈

𝑎
)

1
3

= 0.332Re
1
2𝑥Pr1

3 == Nu𝑥

(79)

即

Nu𝑥 = ℎ𝑥𝑥
𝜆

(80)

• 普朗特数（Prandtl Number）

Pr = 𝜈
𝑎

(81)

物理意义：粘性系数与热扩散系数的比值⇒反映了流动边界层厚度与热边界层厚度的比值

5.4.1 类比法
湍流运动中由于脉动产生附加切应力（湍流切应力）与热量传递（湍流热流密度），具有内在联系：

𝜏 = 𝜏𝑙 + 𝜏𝑡 = 𝜌(𝜈 + 𝜈𝑡)
𝜕𝑢
𝜕𝑦

𝑞 = 𝑞𝑙 + 𝑞𝑡 = −𝜌𝑐𝑝(𝑎 + 𝑎𝑡)
𝜕𝑇
𝜕𝑦

(82)

𝜈𝑡、𝑎𝑡分别为湍流动量扩散率（湍流黏度）与湍流热扩散率

动量与能量方程：
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5.4.2 微分形式

𝑢𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

= (𝜈 + 𝜈𝑡)
𝜕2𝑢
𝜕𝑦2

𝑢𝜕𝑇
𝜕𝑥

+ 𝑣𝜕𝑇
𝜕𝑦

= (𝑎 + 𝑎𝑡)
𝜕2𝑇
𝜕𝑦2

{𝑦 = 0 :  𝑢 = 0 𝑣 = 0 𝑇 = 𝑇𝑤
𝑦 = 𝛿 :  𝑢 = 𝑢∞ 𝑣 = 𝑣𝛿 𝑇 = 𝑇∞

(83)

无量纲化：

𝑈 𝜕𝑈
𝜕𝑋

+ 𝑉 𝜕𝑈
𝜕𝑌

= 1
𝑢∞𝑙

(𝜈 + 𝜈𝑡)
𝜕2𝑈
𝜕𝑌 2

𝑈 𝜕Θ
𝜕𝑋

+ 𝑉 𝜕Θ
𝜕𝑌

= 1
𝑢∞𝑙

(𝑎 + 𝑎𝑡)
𝜕2Θ
𝜕𝑌 2

{
𝑌 = 0 :  𝑈 = 0 𝑉 = 0 Θ = 0
𝑌 = 𝛿

𝑙 :  𝑈 = 1 𝑉 = 𝑣𝛿
𝑢∞

 Θ = 1

(84)

若Pr = 1则有

𝜕𝑈
𝜕𝑌

|
𝑌 =0

= 𝜕𝑢
𝜕𝑦

|
𝑦=0

𝑙
𝑢∞

= 𝜏𝑤
𝑙

𝜇𝑢∞
= 𝜏𝑤

1
2𝜌𝑢2

∞

Re
2

= 𝑐𝑓
Re
2

𝜕Θ
𝜕𝑌

|
𝑌 =0

= 𝜕𝑇
𝜕𝑦

|
𝑦=0

𝑙
𝑇∞ − 𝑇𝑤

= 𝑞𝑤
𝑙

𝜆(𝑇𝑤 − 𝑇∞)
= Nu

𝑐𝑓
Re
2

= Nu

(85)

{{
{{
{{
{{
{{
{

Pr = 1,Re𝑥 ≤ 107 :

{
{
{
{
{𝑐𝑓 = 0.0592Re−1

5
𝑥

Nu𝑥 = 0.0296Re
4
5
𝑥

0.6 < Pr < 60 :   
𝑐𝑓

2
= Nu

RePr1
3

= StPr2
3 = 𝑗

(86)

• 斯坦顿数

St = Nu
RePr

(87)

• j因子

5.4.3 积分形式
Pr = 1 (88)

𝜏𝑤 = 𝜈𝜕𝑢
𝜕𝑦

|
𝑦=0

= 𝜈d𝑢
d𝑦

|
𝑦=𝛿

− ∫
𝛿

0
(𝑢𝜕𝑢

𝜕𝑥
+ 𝑣𝜕𝑢

𝜕𝑦
) d𝑦

= − ∫
𝛿

0
(𝑢𝜕𝑢

𝜕𝑥
+ 𝑣𝜕𝑢

𝜕𝑦
) d𝑦

(89)
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𝑣𝛿 = − ∫
𝛿

0

𝜕𝑢
𝜕𝑥

d𝑦 (90)

𝑢∞𝑣𝛿 = −𝑢∞ ∫
𝛿

0

𝜕𝑢
𝜕𝑥

d𝑦 = ∫
𝛿

0
(𝑢𝜕𝑣

𝜕𝑦
+ 𝑣𝜕𝑢

𝜕𝑦
) d𝑦 = ∫

𝛿

0
(−𝑢𝜕𝑢

𝜕𝑥
+ 𝑣𝜕𝑢

𝜕𝑦
) d𝑦 (91)

𝜏𝑤 = ∫
𝛿

0
(𝑢∞ − 2𝑢)𝜕𝑢

𝜕𝑥
d𝑦 = ∫

𝛿

0
(𝑢∞ − 𝑢)𝜕𝑢

𝜕𝑥
+ 𝑢𝜕(𝑢∞ − 𝑢)

𝜕𝑥
d𝑦 = d

d𝑥
∫

𝛿

0
(𝑢∞ − 𝑢)𝑢 d𝑦 (92)

{{
{{
{{
{{
{{
{

𝜏𝑤 = d
d𝑥

∫
𝛿

0
(𝑢∞ − 𝑢)𝑢 d𝑦

𝑞𝑤 = d
d𝑥

∫
𝛿𝑡

0
(𝑇∞ − 𝑇)𝑢 d𝑦

(93)

5.5 量纲分析
https://en.wikipedia.org/wiki/Dimensionless_numbers_in_fluid_mechanics

6 强制对流与自然对流
6.1 对流换热的物理机制

𝜌𝑐𝑝𝑽 ⋅ ∇𝑇⏟⏟⏟⏟⏟
Source

= 𝑘𝜕2𝑇
𝜕𝑦2 ⟹

∫
𝛿𝑡

0
𝜌𝑐𝑝𝑽 ⋅ ∇𝑇 d𝑦 = −𝑘𝜕𝑇

𝜕𝑦
|
𝑤

⟹

Re𝑥 Pr ∫
1

0
𝑼 ⋅ ∇Θ d𝑌 = Nu𝑥

(94)

6.1.1 努塞尔数及强化传热的途径

Nu𝑥 = Re𝑥 Pr ∫
1

0
𝑼 ⋅ ∇Θ d𝑌 (95)

Nu𝑥 ↑⟸
{{
{
{{Re𝑥 ↑ , Pr ↑

𝑼 ⋅ ∇Θ(夹角,饱满度) ↑
(96)

• 纯导热

𝑼 ⋅ ∇Θ = 0 (速度方向与等温线平行)
Nu = 1

(97)

• 对流占优
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𝑼 ⋅ ∇Θ = |𝑼‖∇Θ|  (速度方向与等温线垂直)

Nu = Re Pr
1 − 𝑒−Re Pr ⇒

{{
{{
{
{{
{{Nu ∼ Re Pr, Re Pr > 3

Nu < 1, 0 < Re Pr < 3

Nu → 0, Re Pr → 0

(98)

可能优于纯导热，也可能弱于纯导热

6.1.2 场协同理论

Nu𝑥 = Re𝑥 Pr ∫
1

0
𝑼 ⋅ ∇Θ d𝑌 (99)

• 两个矢量场：

𝑼 ,∇Θ
• 三个标量场：

|𝑼|, |∇Θ|, cos < 𝑼, ∇Θ > (or cos 𝛽)

• 场协同数：

Fc = Nu
Re Pr

= ℎ
𝜌𝑈∞𝑐

(实际换热量与流动理想换热量比值) (100)

Fc ⟶ 1 ⟺完全协同

反映流场与温度场的协同程度

6.2 强制对流

6.2.1 内部强制对流
管内入口段：

• 层流：

𝑙
𝑑

≈ 𝑙𝑡
𝑑

≈ 0.05 Re Pr (101)
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• 湍流

𝑙
𝑑

≈ 𝑙𝑡
𝑑

≈ 60 (102)

热边界条件

• 层流：除液态金属外，两种条件差别可忽略
• 湍流：两种边界条件下传热系数差异明显

特征值：

• 特征速度：截面平均温度
• 特征温度：截面平均温度：𝑇𝑓 = ∫ 𝑐𝑝𝜌𝑇𝑢 d𝐴

∫ 𝑐𝑝𝜌𝑢 d𝐴
• 平均温差

‣ 恒热流：Δ𝑇𝑚 = 𝑇𝑤 − 𝑇𝑓
‣ 恒壁温：ℎ𝑚𝐴Δ𝑇𝑚 = 𝑞𝑚𝑐𝑝(𝑇𝑓,𝑜 − 𝑇𝑓,𝑖) ⇒ Δ𝑇𝑚 = 𝑇𝑓,𝑜−𝑇𝑓,𝑖

ln(
𝑇𝑤−𝑇𝑓,𝑖
𝑇𝑤−𝑇𝑓,𝑜

)

6.2.2 管内湍流传热实验关联式
• Dittus-Boelter 公式

实验验证范围：

Re𝑓 = 104 ∼ 1.2 × 105, Pr𝑓 = 0.7 ∼ 120, 𝑙
𝑑

≥ 60 (103)

Nu𝑓 = 0.023Re0.8
𝑓 Pr𝑛

𝑓

{{
{
{{𝑛 = 0.4, heating

𝑛 = 0.3, cooling
(104)

• 修正公式
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Nu𝑓 = 0.023Re0.8
𝑓 Pr𝑛

𝑓 𝑐𝑡

{{
{{
{{
{
{{
{{
{{

𝑐𝑡 =
{{
{
{{(

𝑇𝑓
𝑇𝑤

)
0.5

, heating

𝑐𝑡=1, cooling

, Gas

𝑐𝑡 = ( 𝜇𝑓
𝜇𝑤

)
𝑚

{
𝑚=0.11, heating

𝑚=0.25, cooling
, Liquid

(105)

• Sieder-Tate 公式

实验验证范围：

Re𝑓 ≥ 104, Pr𝑓 = 0.7 ∼ 16700, 𝑙
𝑑

≥ 60 (106)

Nu𝑓 = 0.023Re0.8
𝑓 Pr𝑛

𝑓 ( 𝜇𝑓
𝜇𝑤

)
0.14

• 米海耶夫公式

实验验证范围：

Re𝑓 = 104 ∼ 1.75 × 106, Pr𝑓 = 0.6 ∼ 700, 𝑙
𝑑

≥ 50 (107)

Nu𝑓 = 0.023Re0.8
𝑓 Pr0.43

𝑓 ( Pr𝑓
Pr𝑤

)
0.25

• 其他修正：
‣ 当量直径：

𝑑𝑒 = 4𝐴𝑐
𝑃

(108)

‣ 入口段修正系数：

𝑐𝑙 = 1 + (𝑑
𝑙
)

0.7

(109)

‣ 螺线管修正系数：

𝑐𝑟 =

{{
{{
{{
{1 + 10.3( 𝑑

𝑅)3, Liquid

1 + 1.77 𝑑
𝑅 , Gas

(110)

若Pr ≪ 0.6由光滑圆管内充分发展湍流传热准则式：
• 均匀热流边界：

实验验证范围：Re𝑓 = 3.6 × 103 ∼ 9.05 × 105, Pe𝑓 = 102 ∼ 104 (111)

Nu𝑓 = 4.82 + 0.0185Pe0.827
𝑓 (112)

• 均匀壁温边界：

实验验证范围：Pe𝑓 > 100 (113)

Nu𝑓 = 5.0 + .025Pe0.8
𝑓 (114)
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6.2.3 外部强制对流传热实验关联式
• 横掠单管

‣ 圆管：

Nu = 𝐶𝑅𝑒𝑛𝑃𝑟1
3 (115)

‣ 非圆管：也可用上述形式，但𝐶，𝑛的值需改变
• 外掠球

Nu = 2 + (0.4ℜ1
2 + 0.06𝑅𝑒2

3 )𝑃𝑟0.4(𝜇∞
𝜇𝑤

)
1
4

(116)

• 横掠管束

Nu = 𝜀𝑛𝐶𝑅𝑒𝑛𝑃𝑟0.36(
𝑃𝑟𝑓

𝑃𝑟𝑤
)

1
4

(117)

6.2.4 射流冲击传热实验关联式

6.3 自然对流
• Govern equation

𝑢𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

= −𝑔 − 1
𝜌

𝜕𝑝
𝜕𝑥

+ 𝜈𝜕2𝑢
𝜕𝑦2 ⇒

𝑢𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

= 𝑔
𝜌
(𝜌∞ − 𝜌) + 𝜈𝜕2𝑢

𝜕𝑦2 ⇒

𝑢𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

= 𝑔𝛽𝜃 + 𝜈𝜕2𝑢
𝜕𝑦2

(118)

无量纲形式：

𝑢∞𝑙
𝜈

(𝑈 𝜕𝑈
𝜕𝑋

+ 𝑉 𝜕𝑈
𝜕𝑌

) = 𝑔𝛽Δ𝑇 𝑙2

𝜈𝑢∞
Θ + 𝜕2𝑈

𝜕𝑌 2 ⟹

𝑈 𝜕𝑈
𝜕𝑋

+ 𝑉 𝜕𝑈
𝜕𝑌

= Gr
Re2 Θ + 1

Re
𝜕2𝑈
𝜕𝑌 2

(119)

• Grashof number

Gr = 𝑔𝛽Δ𝑇 𝑙3

𝜈2 (120)

表征浮升力与粘性力的比值

自然对流传热准则方程：

Nu = 𝑓(Gr, Pr) (121)

6.3.1 大空间自然对流传热实验关联式
Nu = 𝐶(Gr Pr)𝑛 (122)

常热流边界：

Nu = 𝐵(GrNu Pr)𝑚 (123)
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6.3.2 有限空间自然对流传热实验关联式

Nu = 𝐶(Gr𝛿 Pr)𝑛(𝐻
𝛿

)
𝑚

(124)

6.4 混合对流

{
{
{
{
{ Gr

Re2 ≥ 0 ⇒自然对流影响不能忽略

Gr
Re2 ≥ 1 ⇒强制对流相比自然对流可忽略

(125)

估算关联式：

Nu𝑛
𝑀 = Nu𝑛

𝐹 ± Nu𝑛
𝑁 (126)

两种流动方向相同时取正号，相反时取负号。n之值常取为 3。

7 相变传热
7.1 凝结传热

7.1.1 珠状凝结
• Young’s equation

𝜎𝑠𝑔 − 𝜎𝑠𝑙 = 𝜎𝑙𝑔 cos 𝜃 (127)

𝜃为接触角（气液相切与固体面的夹角）{𝜃<90° 亲水表面
𝜃>90° 疏水表面

气液两界面压差：

Δ𝑝 = 2
𝜎lg

𝑅
(128)

7.1.2 膜状凝结
• Nusselt膜状凝结理论

‣ 常物性
‣ 主流蒸气静止，无对液膜的粘滞应力
‣ 液膜惯性力可忽略
‣ 气液界面无温差
‣ 膜内温度分布线性（膜内无对流）
‣ 液膜过冷度可忽略
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‣ 气体密度相对液体可忽略不计
‣ 液膜表面平整无波动

• 控制方程：

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0

𝜇𝑙
𝜕2𝑢
𝜕𝑦2 + 𝜌𝑙𝑔 = 0

𝜕2𝑇
𝜕𝑦2 = 0

(129)

• 边界条件：

𝑦 = 0 ⟹ 𝑢 = 0, 𝑇 = 𝑇𝑤

𝑦 = 𝛿 ⟹ 𝜕𝑢
𝜕𝑦

= 0, 𝑇 = 𝑇𝑠

(130)

解得：

𝑢 = 𝜌𝑙𝑔
𝜇𝑙

(𝛿𝑦 − 1
2
𝑦2)

𝑇 = 𝑇𝑤 + (𝑇𝑠 − 𝑇𝑤)𝑦
𝛿

(131)

单位截面单位时间潜热守恒：

d𝑞𝑚𝑟 = 𝑟 d
d𝑥

∫
𝛿

0
𝜌𝑙𝑢 d𝑦 = 𝑟[𝑔𝜌2

𝑙 𝛿2 d𝛿
𝜇𝑙

] = 𝜆𝑙
𝑇𝑠 − 𝑇𝑤

𝛿
d𝑥 (132)

• 竖壁膜状凝结

ℎ𝑉 = 0.943[ 𝑔𝑟𝜌2
𝑙 𝜆3

𝑙
𝜇𝑙𝐿(𝑇𝑠 − 𝑇𝑤)

]
1/4

(133)

修正后:
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ℎ𝑉 = 1.13[ 𝑔𝑟𝜌2
𝑙 𝜆3

𝑙
𝜇𝑙𝐿(𝑇𝑠 − 𝑇𝑤)

]
1/4

(134)

• 水平管外膜状凝结

ℎ𝐻 = 0.729[ 𝑔𝑟𝜌2
𝑙 𝜆3

𝑙
𝜇𝑙𝑑(𝑇𝑠 − 𝑇𝑤)

]
1/4

(135)

• 球表面

ℎ𝑆 = 0.826[ 𝑔𝑟𝜌2
𝑙 𝜆3

𝑙
𝜇𝑙𝑑(𝑇𝑠 − 𝑇𝑤)

]
1/4

(136)

水平管与竖壁(管)传热系数比:

ℎ𝐻
ℎ𝑉

= 0.77(𝐿
𝑑

)
1/4

(137)

倾斜壁面则用𝑔 sin𝜑代替𝑔

• 湍流膜状凝结

液膜特征雷诺数:

𝑅𝑒 = 𝑑𝑒𝜌𝑢̄𝑙
𝜇

=
4𝐴
𝑃 𝑞𝑚,𝑙

𝜇
=

4𝛿𝑞𝑚,𝑙

𝜇
= 4𝛿ℎ(𝑇𝑠 − 𝑇𝑤)𝐿

𝜇𝑟
(138)

水平管:

𝑅𝑒 = 4𝛿ℎ(𝑇𝑠 − 𝑇𝑤)𝜋𝑅
𝜇𝑟

(139)

整个壁面的平均表面传热系数:

ℎ̄ = ℎ𝑙𝑎𝑚
𝑥𝑐
𝑙

+ ℎ𝑡𝑢𝑟𝑏(1 − 𝑥𝑐
𝑙

) (140)

整理得:

𝑁𝑢 = 𝐺𝑎1/3 𝑅𝑒

58𝑃𝑟−1/2
𝑠 (𝑃𝑟𝑤

𝑃𝑟𝑠
)

1/4
(𝑅𝑒3/4 − 253) + 9200

(141)

7.1.3 膜状凝结影响
• 不凝结气体：分压增大冷凝的压阻（抑制扩散传质）

• 管排数：凝结液滴落碰撞与飞溅造成影响

• 蒸气流速：高速蒸气会有粘滞应力，导致液膜拉薄（ℎ ↑）或增厚（ℎ ↓）

• 蒸气过热度：潜热改用过热蒸气与饱和液焓差即可

• 液膜过冷度及温度分布非线性：

𝑟′ = 𝑟 + 0.68𝑐𝑝(𝑇𝑠 − 𝑇𝑤) = 𝑟(1 + 0.68𝐽𝑎) (142)
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𝐽𝑎 =
𝑐𝑝(𝑇𝑠 − 𝑇𝑤)

𝑟
(143)

Jakob数, 衡量液膜过冷度大小(显热与潜热之比).

7.1.4 膜状凝结传热强化
• 管内强制对流冷凝传热

蒸气流速较大时，形成环状流动（annular flow）

• 膜状凝结强化技术：
‣ 减薄液膜：锯齿管、肋管（表面张力降低肋峰处厚度）
‣ 及时排液：排液圈、泄流板

7.2 沸腾传热

7.2.1 池沸腾（大容器沸腾）
• 沸腾曲线——沸腾传热的基本模式

壁面过热度

Δ𝑇 = 𝑇𝑤 − 𝑇𝑠 (144)

• 自然对流区 Δ𝑇 < 4°𝐶
‣ 过热液体对流至自由液面后蒸发

• 核态沸腾区
‣ 孤立气泡区

– 气泡彼此互不干扰,对液体扰动大,换热强
‣ 气柱区

– 扰动更强,热流密度上升,直至达到临界热流密度
– DNB点:沸腾危机点

• 过度沸腾区
‣ 气泡迅速形成以至形成气膜,导热系数降低
‣ Leidenfrost点

• 膜态沸腾区

27



Institute of Refrigeration and Cryogenic

‣ 气泡形成稳定气膜,此后过热蒸汽传热,热流密度增加(对流和辐射均增加)

7.2.2 （管内）强制对流沸腾

表 1: 竖直管内强制对流沸腾传热流动换热情况

流动类型 换热类型

单相水 单相对流换热

泡状流 过冷沸腾

块状流 液膜对流沸腾

环状流 湿蒸气换热

单相流 过热蒸气换热
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表 2: 竖直管/水平管内强制对流沸腾传热流动分类

竖直管 泡状流 弹状流 浪状流 雾-环状流 环状流

水平管 泡状流 塞状流 分层流 波状流 弹状流 环状流

7.2.3 沸腾换热机理(气泡动力学)
一般认为粗糙表面微细凹缝或裂穴可能成为汽化核心

• 气泡生成必要条件:
‣ 加热壁面需有汽化核心

𝜋𝑅2(𝑝𝑣 − 𝑝𝑙) = 2𝜋𝑅𝜎

𝑅 = 2𝜎
𝑝𝑣 − 𝑝𝑙

> 0

𝑝𝑣 > 𝑝𝑙 ≈ 𝑝𝑠

(145)

‣ 液体需过热

𝑇𝑙 = 𝑇𝑣 > 𝑇𝑠 (146)

• 气泡存在条件:

气泡半径需满足克拉伯龙方程

𝑅 ≥ 𝑅min = 2𝜎𝑇𝑠
𝑟𝜌𝑣(𝑇𝑤 − 𝑇𝑠)

(147)

7.2.4 沸腾换热计算
池沸腾(核态沸腾)

• 米海耶夫公式

对水:

ℎ = 0.1224Δ𝑇 2.33𝑝0.5 = 0.5335𝑞0.7𝑝0.15 (148)

• Rohsenow公式

𝑐𝑝,𝑙Δ𝑇
𝑟

= 𝐶𝑤,𝑙[
𝑞

𝜇𝑙𝑟
√

𝜎
𝑔(𝜌𝑙 − 𝜌𝑣)

]
1/3

𝑃𝑟𝑠
𝑙

𝐽𝑎 = 𝐶𝑤,𝑙𝑅𝑒1/3𝑃𝑟𝑠
𝑙

(149)

𝐶𝑤,𝑙为取决于加热表面——液体组合的经验常数
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对水:𝑠 = 1,其他液体:𝑠 = 1.7

• Cooper公式

ℎ = 𝐶𝑞0.67𝑀−0.5
𝑟 𝑝𝑚

𝑟 (− lg 𝑝𝑟)
−0.55

𝐶 = 90 [𝑊 0.33/(𝑚0.66 ⋅ 𝐾)]

𝑚 = 0.12 − 0.21 lg{𝑅𝑝[𝜇𝑚]}

(150)

𝑀𝑟相对分子质量,𝑅𝑝表面粗糙度(单位𝜇𝑚)

• 临界热流密度(CHF)

Taylor气膜不稳定性原理:

𝑞max = 𝜋
24

𝑟𝜌𝑣[
𝜎𝑔(𝜌𝑙 − 𝜌𝑣)

𝜌2
𝑣

]
1/4

( 𝜌𝑙
𝜌𝑙 + 𝜌𝑣

)
1/2

(151)

推荐公式(实际压力偏离临界压力较远时)

𝑞max = 0.149𝑟𝜌0.5
𝑣 [𝜎𝑔(𝜌𝑙 − 𝜌𝑣)]

0.25 (152)

考虑接触角:

𝑞max = 𝐶(𝜃, 𝜑)𝑟𝜌0.5
𝑣 [𝜎𝑔(𝜌𝑙 − 𝜌𝑣)]

0.25

𝐶(𝜃, 𝜑) = 1 + cos 𝜃
16

[2
𝜋

+ 𝜋
4
(1 + cos 𝜃) cos 𝜑]

0.5 (153)

膜态沸腾

• 横管膜态沸腾(类比膜状凝结)

ℎ = 0.62[𝑔𝑟𝜌𝑣(𝜌𝑙 − 𝜌𝑣)𝜆3
𝑣

𝜇𝑣𝑑(𝑇𝑤 − 𝑇𝑠)
]

0.25

(154)

定性温度𝑇𝑚 =
𝑇𝑤+𝑇𝑠
2 决定蒸气热物性

• 球面膜态沸腾

ℎ = 0.67[𝑔𝑟𝜌𝑣(𝜌𝑙 − 𝜌𝑣)𝜆3
𝑣

𝜇𝑣𝑑(𝑇𝑤 − 𝑇𝑠)
]

0.25

(155)

• 考虑辐射换热

ℎ4
3 = ℎ

4
3
𝑐 + ℎ

4
3
𝑟 (156)

7.2.5 沸腾传热的影响因素
• 不凝结气体: 溶解的不凝结气体逸出可促进壁面凹坑活化,相同过热度下增强换热
• 过冷度: 核态沸腾起始区域:ℎ ∼ (𝑇𝑤 − 𝑇𝑓)

1
4 ,相比饱和液换热会更强

• 重力加速度: 影响自然对流
• 沸腾表面结构: 微小凹坑易产生汽化核心
• 液位高度: 液位降低到一定值时,表面传热系数随液位降低而升高(水常压下的临界液位约为5𝑚𝑚)
• 管束: 气泡上升扰动上端管道沸腾
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7.2.6 沸腾换热强化
• 液体: 加入表面活性剂⟶降低表面张力,使气泡更易产生;纳米流体(微尺度沸腾传热)
• 加热面改造:腐蚀表面获取更多汽化核心点
• 降膜蒸发
• 热管

8 辐射传热
8.1 基本概念
• 定义:

由热运动产生的表现为电磁波形式的能量

• 特点：
‣ 高于 0 K的任何物体均会向空间发出辐射
‣ 无需介质
‣ 伴随电磁能-热能转变
‣ 强烈方向性
‣ 辐射能量∼波长、温度
‣ 发射辐射满足四次方定律

• 物体表面对电磁波的作用

𝑄 = 𝑄𝛼 + 𝑄𝜌 + 𝑄𝜏 ⟹ 𝑄𝛼
𝑄

+
𝑄𝜌

𝑄
+ 𝑄𝜏

𝑄
= 1 (157)

𝛼 + 𝜌 + 𝜏 (158)

• 吸收比（absorbivity）：𝛼
• 反射比（reflectivity）:𝜌
• 透射比（transmissivity）：𝜏

金属/大多数固体和液体：一般𝜏 = 0, 𝛼 + 𝜌 = 1 不含颗粒气体：𝜌 = 0, 𝛼 + 𝜏 = 1 黑体：𝛼 = 1 镜体或白体：𝜌 =
1 透明体：𝜏 = 1

• 固体反射分类（取决于粗糙程度）
‣ 镜反射
‣ 漫反射

• 黑体模型——能吸收到投入其面上的所有热辐射能(𝛼 = 1)的理想模型

8.2 黑体辐射基本定律
• 辐射力𝐸
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单位时间内，物体单位表面积向半球空间发射的所有波长的能量总和

• 光谱辐射力𝐸𝜆
单位时间内，单位波长范围内，物体的单位表面积向半球空间发射的能量

𝐸 = ∫
∞

0
𝐸𝜆 d𝜆 (159)

• 黑体辐射力𝐸𝑏
• 黑体光谱辐射力𝐸𝑏𝜆
• 投入辐射𝐺

单位时间内投射到表面的单位体积上的总辐射能

• 有效辐射𝐽

单位时间内离开表面的单位面积上的总辐射能(W·m−2)：包括物体表面自身辐射力与其对投入辐射力的反射部
分(e+r)

𝐽 = 𝐸 + 𝜌𝐺 (160)

• 净辐射换热量𝑞

𝑞 = 𝐽 − 𝐺 (161)

对于不透明介固体：

𝑞 = 𝐸 − 𝛼𝐺 (162)

• Stefan-Boltzmann 定律（适用于远场辐射）

𝐸𝑏 = 𝜎𝑇 4 = 𝐶0(( 𝑇
100

)
4

)

𝜎 = 5.67 × 10−8 W/(m2 ⋅ K4),   𝐶0 = 5.67 W/(m2 ⋅ K4)

(163)

Stefan-Boltzmann常数𝜎，黑体辐射系数𝐶0

• Planck定律

𝐸𝑏𝜆 = 𝑐1𝜆−5

𝑒𝑐2/(𝜆𝑇) − 1
(164)

第一辐射常数𝑐1 = 3.742 × 10−16 W ⋅ m2，第二辐射常数𝑐2 = 1.4388 × 10−2 W ⋅ K
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• Wien位移定律

𝜆𝑚𝑇 = 2.8976 × 10−3  m · K (165)

𝐸𝑏 = ∫ 𝐸𝑏𝜆 d𝜆 = ∫ 𝑐1𝜆−5

𝑒𝑐2/(𝜆𝑇) − 1
d𝜆 (166)

• 黑体辐射函数

𝐹𝑏(0−𝜆) =
𝐸𝑏(0−𝜆)

𝐸𝑏
=

∫𝜆
0

𝐸𝑏𝜆 d𝜆
𝜎𝑇 4 = 𝑓(𝜆𝑇 ) (167)

𝐹𝑏(𝜆1−𝜆2) = 𝑓(𝜆2𝑇 ) − 𝑓(𝜆1𝑇 ) (168)

• Lambert定律
• 立体角：

Ω = 𝐴𝑐
𝑟2 (169)

• 经度角𝜑
• 纬度角𝜃

d𝐴𝑐 = 𝑟 d𝜃𝑟 sin 𝜃 d𝜑 (170)

dΩ = d𝐴𝑐
𝑟2 = sin 𝜃 d𝜃 d𝜑 (171)

• 定向辐射强度

dΦ
dΩ d𝐴 cos 𝜃

= 𝐼 (172)

𝐸𝑏 = ∫
Ω=2𝜋

dΦ
d𝐴

= 𝐼𝑏 ∫
Ω=2𝜋

cos 𝜃 dΩ = 𝐼𝑏 ∫
2𝜋

0
d𝜑 ∫

𝜋
2

0
sin 𝜃 cos 𝜃 d𝜃 = 𝜋𝐼𝑏 (173)
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8.3 实际物体辐射特性
• 实际物体的辐射力

𝐸 = 𝜀𝐸𝑏 = 𝜀𝜎𝑇 4 = 𝜀𝐶0(
𝑇

100
)

4

(174)

• 发射率（黑度）

𝜀 = 𝐸
𝐸𝑏

(175)

• 光谱发射率

𝜀𝜆 = 𝐸𝜆
𝐸𝑏𝜆

(176)

𝜀 =
∫∞

0
𝜀𝜆𝐸𝑏𝜆 d𝜆
𝜎𝑇 4 (177)

• 方向光谱发射率

𝜀𝜃𝜆 = 𝐼𝜃𝜆
𝐼𝑏𝜆

(178)

• 方向总发射率

𝜀𝜃 = 𝐼𝜃
𝐼𝑏

=
∫∞

0
𝐼𝜃𝜆 d𝜆

∫∞
0

𝐼𝑏𝜆 d𝜆
(179)

𝜀 =
∫

Ω=2𝜋
𝜀𝜃𝐼𝑏 cos 𝜃 dΩ
𝜋𝐼𝑏

=
∫

Ω=2𝜋
𝜀𝜃 cos 𝜃 dΩ
𝜋

(180)

• 漫反射：表面方向发射率与方向无关

𝜀 = 𝑀𝜀𝑛 (181)

8.4 实际物体吸收特性
• 选择性吸收与吸收比：

𝛼 = 𝐺abs

𝐺
(182)
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• 光谱吸收比

𝛼𝜆 =
𝐺𝜆,abs

𝐺𝜆
(183)

𝛼1 =
∫∞

0
𝛼𝜆,1𝜀𝜆,2𝐸𝑏𝜆,2 d𝜆

∫∞
0

𝜀𝜆,2𝐸𝑏𝜆,2 d𝜆
(184)

• 漫射表面/漫射体：定向发射率与方向无关

• 灰体：光谱吸收比与波长无关

• 漫灰体：漫射体+灰体

• 白体：镜面

• Kirchhoff定律

无条件情况下，方向光谱发射比与方向光谱吸收比恒等

𝜀𝜃𝜆 = 𝛼𝜃𝜆 (185)

漫射表面的光谱发射比与光谱吸收比恒等

𝜀𝜆 = 𝛼𝜆 (186)

与黑体辐射处于热平衡的所有物体 或 漫灰表面

𝜀 = 𝛼 (187)

9 辐射传热计算
9.1 辐射传热角系数
• 假设：两者均为漫反射表面；辐射热流密度均匀

• 表面 1对表面 2的角系数：表面 1有效辐射𝐽1转化为表面 2上投入辐射𝐺2的百分数

𝑋1,2 = 𝐺2𝐴2
𝐽1𝐴1

(188)

• 表面 2对表面 1的角系数：表面 2有效辐射𝐽2转化为表面 1上投入辐射𝐺1的百分数

𝑋2,1 = 𝐺1𝐴1
𝐽2𝐴2

(189)

• 性质：
‣ 相对性：

𝑋𝑑1,𝑑2 d𝐴1 = 𝑋𝑑2,𝑑1 d𝐴2

𝑋1,2𝐴1 = 𝑋2,1𝐴2

(190)

‣ 完整性：

∑
𝑛

𝑖=1
𝑋1,𝑖 = 1 (191)

非凹面时𝑋1,1 = 0，凹面时𝑋1,1 ≠ 0
‣ 可加性：
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𝑋1,2 = ∑
𝑛

𝑖=1
𝑋1,2𝑖 (192)

𝐺2𝐴2 = ∫ d𝑞1−2 = ∫ ∫
Ω=2𝜋

𝐼𝑒+𝑟,1 cos 𝜃1 dΩ2to1 d𝐴1 = 𝐼𝑒+𝑟,1 ∬ cos 𝜃1 cos 𝜃2
𝑟2 d𝐴1 d𝐴2

= 𝐽1 ∬ cos 𝜃1 cos 𝜃2
𝜋𝑟2 d𝐴1 d𝐴2

(193)

𝑋1,2 = 1
𝐴1

∬ cos 𝜃1 cos 𝜃2
𝜋𝑟2 d𝐴1 d𝐴2

𝑋2,1 = 1
𝐴2

∬ cos 𝜃1 cos 𝜃2
𝜋𝑟2 d𝐴1 d𝐴2

(194)

𝑋𝑑1,𝑑2 = cos 𝜃1 cos 𝜃2
𝜋𝑟2 d𝐴2

𝑋𝑑2,𝑑1 = cos 𝜃1 cos 𝜃2
𝜋𝑟2 d𝐴1

(195)

• 几何简化

𝑋1,2 = 𝐴1 + 𝐴2 − 𝐴3
2𝐴1

𝑋1,3 = 𝐴1 + 𝐴3 − 𝐴2
2𝐴1

𝑋2,3 = 𝐴2 + 𝐴3 − 𝐴1
2𝐴2

(196)

𝑋1,2 = 交叉线之和−不交叉线之和
2 ×表面𝐴1的断面长度

(197)
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9.2 两表面封闭系统的辐射换热

9.2.1 漫灰体表面
Φ1,2 = 𝑞1𝐴1 = 𝐴1(𝐽1 − 𝐺1) = 𝐴1(𝜀1𝐸𝑏1 − 𝛼1𝐺1)

𝐽1 = 𝐸𝑏1 − ( 1
𝜀1

− 1)𝑞1

𝑞1 = 𝐸𝑏1 − 𝐽1
1 − 𝜀1

𝜀1

Φ1,2 = 𝐸𝑏1 − 𝐽1
1 − 𝜀1
𝐴1𝜀1

(198)

9.2.2 黑体表面

Φ1,2 = 𝐸𝑏1 − 𝐽1
1 − 𝜀1
𝐴1𝜀1

= 0
0

= const ⟹ 𝐽1 = 𝐸𝑏1, 𝜀1 = 1 (199)

9.2.3 重辐射表面（辐射绝热表面）

Φ1,2 =
𝐸𝑏1

− 𝐽1
1 − 𝜀1
𝐴1𝜀1

= 0 ⟹ 𝐽1 = 𝐸𝑏1 (200)

• 温度可视为黑体
• 能量可视为白体

9.2.4 两黑体表面封闭腔
Φ1,2 = 𝐴1𝐽1𝑋1,2 − 𝐴2𝐽2𝑋2,1 = 𝐴1𝑋1,2(𝐸𝑏1 − 𝐸𝑏2)

= 𝐸𝑏1 − 𝐸𝑏2
1

𝐴1𝑋1,2

(201)
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9.2.5 两表面封闭腔
Φ1,2 = 𝐴1𝐽1𝑋1,2 − 𝐴2𝐽2𝑋2,1 = 𝐴1𝑋1,2(𝐽1 − 𝐽2)

= 𝐽1 − 𝐽2
1

𝐴1𝑋1,2

(202)

9.3 热电比拟

Φ𝑖 = 𝐸𝑏𝑖 − 𝐽𝑖
1 − 𝜀𝑖
𝐴𝑖𝜀𝑖

= ∑
𝑁

𝑗

𝐽𝑖 − 𝐽𝑗
1

𝐴𝑖𝑋𝑖,𝑗

= 𝐸𝑏𝑖 − 𝐽𝑁

1 − 𝜀𝑖
𝐴𝑖𝜀𝑖

+ ∑
𝑁

𝑖

1
𝐴𝑖𝑋𝑖,𝑗

(203)

Φ1,2 = 𝐸𝑏1 − 𝐸𝑏2
1 − 𝜀1
𝐴1𝜀1

+ 1
𝐴1𝑋1,2

+ 1 − 𝜀2
𝐴2𝜀2

=
𝐴1𝑋1,2(𝐸𝑏1 − 𝐸𝑏2)

𝑋1,2
1 − 𝜀1

𝜀1
+ 1 + 𝑋2,1

1 − 𝜀2
𝜀2

= 𝜀𝑠𝐴1𝑋1,2(𝐸𝑏1 − 𝐸𝑏2)

(204)

系统发射率/黑度𝜀𝑠
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9.3.1 遮热板

9.3.2 三表面凸封闭腔
• 正常三表面凸封闭腔

• 其中一表面为重辐射面或黑体表面

黑体相当于分支短路（三元）；重辐射面相当于分支断路（简化为二元）
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9.3.3 其他特例

9.4 气体辐射
• 对波长具有选择性
• 不能看成灰体
• 辐射和吸收光谱不同
• 具有体积辐射特性

9.4.1 气体吸收定律
• Beers定律

d𝐼𝜆,𝑥

𝐼𝜆,𝑥
= −𝑘𝜆 d𝑥,   𝑘𝜆 光谱减弱系数

𝐼𝜆,𝑠 = 𝐼𝜆,0𝑒−𝑘𝜆𝑠,   𝑠气体平均射线行程长

(205)

𝜏𝜆(𝑇 , 𝑝𝑠) = 𝑒−𝑘𝜆𝑠

𝛼𝜆(𝑇 , 𝑝𝑠) = 𝜀𝜆(𝑇 , 𝑝𝑠) = 1 − 𝑒−𝑘𝜆𝑠
(206)

𝑠 ≈ 3.6𝑉
𝐴

(207)

9.4.2 气体辐射率与吸收比
• 气体总发射率

𝜀𝑔 =
𝐸𝑔

𝐸𝑏
=

∫∞
0

(1 − 𝑒−𝑘𝜆𝑠𝐸𝑏𝜆 d𝜆)
𝜎𝑇 4

𝑔
(208)

• 水蒸气二氧化碳混合气体
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𝜀𝑔 = 𝜀𝑤 + 𝜀𝑐 − Δ𝜀

𝛼𝑔 = 𝛼𝑤 + 𝛼𝑐 − Δ𝛼
(209)

9.4.3 气体辐射换热计算
• 黑体包壳

𝑞 = 𝜀𝑔𝐸𝑏,𝑔 − 𝛼𝑔𝐸𝑏,𝑤 (210)
• 两无限大平板

‣ 气体定温——看作黑体表面
‣ 气体不定温——看作重辐射表面

气体与表面之间热阻： 1
𝐴1𝑋1,𝑔𝜀𝑔

, 1
𝐴2𝑋2,𝑔𝜀𝑔

，表面与表面之间热阻 1
𝐴1𝑋1,2(1−𝜀𝑔)

气体与表面：

Φ𝑔,1 = 𝐴1𝑋1,𝑔(𝐽𝑔 − 𝐽1) = 𝐴1𝑋1,𝑔(𝐽𝑔 − 𝐺𝑔) = 𝐴1𝑋1,𝑔(𝜀𝑔𝐸𝑏𝑔 + 𝜏𝑔𝐺𝑔 − 𝐺𝑔)

= 𝐴1𝑋1(𝜀𝑔𝐸𝑏𝑔 − 𝛼𝑔𝐽1) =
𝐸𝑏𝑔 − 𝐽1

𝐴1𝑋1,𝑔𝜀𝑔

(211)

表面与表面：

Φ1,2 = 𝐴1𝑋1,2𝐽1𝜏𝑔 − 𝐴2𝑋2,1𝐽2𝜏𝑔 = 𝐴1𝑋1,2𝜏𝑔(𝐽1 − 𝐽2) = 𝐽1 − 𝐽2
𝐴1𝑋1,2(1 − 𝜀𝑔)

(212)

9.5 综合传热
• 多层平行板：

热稳态下热阻可简化为

𝑅 = 1

∑
𝑁−1

𝑖
( 1

𝜀𝑖
+ 1

𝜀𝑖+1
− 1)

(213)

• 热电偶：

热电偶结点 1热平衡方程

ℎ1(𝑇𝑓 − 𝑇1) = 𝜀1𝜎(𝑇 4
1 − 𝑇 4

𝑤) = 𝑞𝑟 (214)

测量绝对误差：

Δ𝑇 = 𝑇𝑓 − 𝑇1 = 𝑞𝑟
ℎ1

(215)

采用遮热罩式热电偶可减小𝑞𝑟，抽气式热电偶可增大ℎ1

• 遮热罩热电偶

ℎ1(𝑇𝐹 − 𝑇1) = 𝜀1𝜎(𝑇 4
1 − 𝑇 4

3 )

ℎ3(𝑇𝑓 − 𝑇3) = 𝜀3𝜎(𝑇 4
3 − 𝑇 4

𝑤)
(216)
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• 同时考虑辐射与对流
‣ 单相

ℎ = ℎ𝑐 + ℎ𝑟 (217)
‣ 膜态沸腾

ℎ4
3 = ℎ

4
3
𝑐 + ℎ

4
3
𝑟 (218)

ℎ𝑟 = Φ𝑟
𝐴(𝑇𝑤 − 𝑇𝑓)

(219)

10 传热过程分析与换热器的热计算
10.1 传热过程分析与计算

10.1.1 平壁传热

𝑘 = 1
1
ℎ1

+ ∑
𝑛

𝑖

𝛿𝑖
𝜆𝑖

+ 1
ℎ2

(220)

10.1.2 圆筒壁
• 管外侧为基准

𝑘 = 1
1
ℎ1

𝑑𝑜
𝑑𝑖

+ 𝑑𝑜
2𝜆

ln 𝑑𝑜
𝑑𝑖

+ 1
ℎ𝑜

(221)

• 管内侧为基准

𝑘 = 1
1
ℎ1

+ 𝑑𝑖
2𝜆

ln 𝑑𝑜
𝑑𝑖

+ 1
ℎ𝑜

𝑑𝑖
𝑑𝑜

(222)

10.1.3 带保温层圆筒/圆管

Φ =
𝜋𝑙(𝑇𝑓𝑜 − 𝑇𝑓𝑖)

1
ℎ𝑖𝑑𝑖

+ 1
2𝜆1

ln(𝑑𝑚
𝑑𝑖

) + 1
2𝜆2

ln( 𝑑𝑜
𝑑𝑚

) + 1
ℎ𝑜𝑑𝑜

(223)

在𝑑𝑜 = 2𝜆2
ℎ2

= 𝑑𝑐𝑟有传热极大值

10.1.4 肋壁
• 肋侧为基准
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𝑘 = 1
1
ℎ𝑖

𝐴𝑜
𝐴𝑖

𝛿
𝜆

𝐴𝑜
𝐴𝑖

+ 1
ℎ𝑜𝜂𝑜

,   𝜂𝑜 =
𝐴1 + 𝜂𝑓𝐴2

𝐴𝑜
(肋面效率),   𝜂𝑓(肋效率) (224)

• 光侧表面为基准

𝑘 = 1
1
ℎ𝑖

+ 𝛿
𝜆

+ 𝐴𝑖
ℎ𝑜𝜂𝑜𝐴𝑜

= 1
1
ℎ𝑖

+ 𝛿
𝜆

+ 1
ℎ𝑜𝜂𝑜𝛽

,   𝛽 = 𝐴𝑜
𝐴𝑖

(肋化系数) (225)

10.2 换热器

• 套管式
‣ 顺流
‣ 逆流

• 管壳式
‣ 壳程
‣ 管程

1-2型与 2-4型管壳式换热器

• 带污垢热阻的换热器
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𝑘 = 1
1
ℎ𝑖

𝐴𝑜
𝐴𝑖

+ 𝑟𝑖
𝐴𝑜
𝐴𝑖

+ 𝑟𝑤
𝐴𝑜
𝐴𝑖

+ 𝑟𝑜
1
𝜂𝑜

+ 1
ℎ𝑜𝜂𝑜

(226)

10.3 平均传热温差
• 顺流

dΦ = 𝑘Δ𝑇 d𝐴 (227)

dΦ = −𝑞𝑚1𝑐𝑝1 d𝑇1 = 𝑞𝑚2𝑐𝑝2 d𝑇2 (228)

𝜇 = ( 1
𝑞𝑚1𝑐𝑝1

+ 1
𝑞𝑚2𝑐𝑝2

) (229)

d(Δ𝑇) = −( 1
𝑞𝑚1𝑐𝑝1

+ 1
𝑞𝑚2𝑐𝑝2

) dΦ = −𝜇 dΦ (230)

dΔ𝑇
Δ𝑇

= −𝜇𝑘 d𝐴

Δ𝑇 = Δ𝑇 ′𝑒−𝜇𝑘𝐴(𝑥)

−𝜇𝑘𝐴 = ln Δ𝑇 ″ − ln Δ𝑇 ′

(231)

Δ𝑇𝑚 = Δ𝑇 ′ − Δ𝑇 ″

ln Δ𝑇 ′ − ln Δ𝑇 ″ (232)
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• 逆流

dΦ = −𝑞𝑚1𝑐𝑝1 d𝑇1 = −𝑞𝑚2𝑐𝑝2 d𝑇2 (233)

𝜇 = ( 1
𝑞𝑚1𝑐𝑝1

− 1
𝑞𝑚2𝑐𝑝2

) (234)

d(Δ𝑇) = −( 1
𝑞𝑚1𝑐𝑝1

− 1
𝑞𝑚2𝑐𝑝2

) dΦ = −𝜇 dΦ (235)

Δ𝑇 = Δ𝑇 ′𝑒−𝜇𝑘𝐴(𝑥)

−𝜇𝑘𝐴 = ln Δ𝑇 ″ − ln Δ𝑇 ′
(236)

Δ𝑇𝑚 = Δ𝑇 ′ − Δ𝑇 ″

ln Δ𝑇 ′ − ln Δ𝑇 ″ (237)

• 凹凸性分析：

顺流时：𝜇 > 0故Δ𝑇𝑚随𝐴增大而减小，若𝐴 = 0处为流体进口，则热流体下凹，冷流体上凸（凹凸性相反）

逆流时：

𝑞ℎ𝑐ℎ > 𝑞𝑐𝑐𝑐时，𝜇 < 0，故Δ𝑇𝑚随𝐴增大而增大。若𝐴 = 0处为热流体进口，则两流体均上凸；若𝐴 = 0处为冷流
体进口，则两流体均下凹

𝑞ℎ𝑐ℎ < 𝑞𝑐𝑐𝑐时，𝜇 > 0，故Δ𝑇𝑚随𝐴增大而减小。若𝐴 = 0处为热流体进口，则两流体均下凹；若𝐴 = 0处为冷流
体进口，则两流体均上凸

• 其他复杂布置（注意壳程和管程）

Δ𝑇𝑚 = 𝜑(Δ𝑇𝑚)ctf(ctf代表逆流对数平均温差)

𝜑 = 𝜑(𝑃 , 𝑅)
(238)
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•
𝑃 = 𝑇 ″

𝑐 − 𝑇 ′
𝑐

𝑇 ′
ℎ − 𝑇 ′

𝑐
理论温升比

𝑅 = 𝑇 ′
ℎ − 𝑇 ″

ℎ
𝑇 ″

𝑐 − 𝑇 ′
𝑐

=
𝑞𝑚𝑐𝑐𝑝𝑐

𝑞𝑚ℎ𝑐𝑝ℎ
最大热容比

(239)

10.4 间壁式换热器的热计算
八个未知量：𝑞𝑚ℎ𝑐ℎ, 𝑞𝑚𝑐𝑐𝑐, 𝐴, 𝑘, Φ及𝑇 ′

ℎ, 𝑇 ″
ℎ , 𝑇 ′

𝑐 , 𝑇 ″
𝑐 中的三个

• 换热器效能

𝜀 = 𝑞
𝑞max

= 𝐶ℎ(𝑇 ′
ℎ − 𝑇 ″

ℎ )
𝐶min(𝑇 ′

ℎ − 𝑇 ′
𝑐 )

= 𝐶𝑐(𝑇 ″
𝑐 − 𝑇 ′

𝑐 )
𝐶min(𝑇 ′

ℎ − 𝑇 ′
𝑐 )

=
|𝑇 ′ − 𝑇 ″|max

𝑇 ′
ℎ − 𝑇 ′

𝑐
(240)

• 热容比

𝐶𝑟 = 𝐶min
𝐶max

=
|𝑇 ′ − 𝑇 ″|min
|𝑇 ′ − 𝑇 ″|max

(241)

• 顺流

Δ𝑇 ′ − Δ𝑇 ″ = 𝜀(𝑇 ′
ℎ − 𝑇 ′

𝑐 ) + 𝐶𝑟|𝑇 ′ − 𝑇 ″|max

= 𝜀(1 + 𝐶𝑟)(𝑇 ′
ℎ − 𝑇 ′

𝑐 ) = 𝜀(1 + 𝐶𝑟)Δ𝑇 ′
(242)

1 − Δ𝑇 ″

Δ𝑇 ′ = 𝜀(1 + 𝐶𝑟)

Δ𝑇 ″

Δ𝑇 ′ = 𝑒−𝜇𝑘𝐴

(243)

𝜀 = 1 − exp(−𝜇𝑘𝐴)
1 + 𝐶𝑟

(244)

𝜀 =
1 − exp(− 𝑘𝐴

𝐶min
(1 + 𝐶𝑟))

1 + 𝐶𝑟
= 1 − exp[− NTU (1 + 𝐶𝑟)]

1 + 𝐶𝑟
(245)

• 逆流

𝜀 = 1 − exp[− NTU (1 − 𝐶𝑟)]
1 − 𝐶𝑟 exp[− NTU (1 − 𝐶𝑟)]

(246)

• 相变
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𝐶𝑟 = 0,  𝜀 = 1 − exp[−NTU] (247)

• 等热容
‣ 顺流

𝜀 = 1 − exp[−2NTU]
2

(248)

‣ 逆流

𝜀 = NTU
1 + NTU

(249)

10.4.1 设计计算
给定𝑞𝑚ℎ𝑐ℎ, 𝑞𝑚𝑐𝑐𝑐及 进出口温度中的三个，求𝐴和𝑘

• 平均温差法
‣ 定方案确定𝑘
‣ 由

Φ = 𝑞𝑚ℎ𝑐ℎ(𝑇 ′
ℎ − 𝑇 ″

ℎ ) = 𝑞𝑚𝑐𝑐𝑐(𝑇 ″
𝑐 − 𝑇 ′

𝑐 ) (250)

确定待定温度

‣ 计算平均温差Δ𝑇𝑚
‣ 由

Φ = 𝑘𝐴Δ𝑇𝑚 (251)

核验阻力

‣ 若阻力过大则重新设计

• 效能-传热单元数法
‣ 由已知条件计算𝜀求 NTU
‣ 偏差较大则重新设计

10.4.2 校核计算
给定𝐴, 𝑞𝑚ℎ𝑐ℎ, 𝑞𝑚𝑐𝑐𝑐及 两个进口温度，求两个出口温度

• 平均温差法
‣ 假设 1流体出口温度，计算另一流体出口温度
‣ 计算平均温差Δ𝑇𝑚
‣ 计算𝑘
‣ 由

Φ = 𝑘𝐴Δ𝑇𝑚 (252)

计算Φ𝑡
‣ 由

Φ = 𝑞𝑚ℎ𝑐ℎ(𝑇 ′
ℎ − 𝑇 ″

ℎ ) = 𝑞𝑚𝑐𝑐𝑐(𝑇 ″
𝑐 − 𝑇 ′

𝑐 ) (253)

计算Φ𝑏
‣ 比较Φ𝑡和Φ𝑏，偏差小则设计合理，否则重新取温度直到满足精度要求

• 效能-传热单元数法
‣ 假设 1流体出口温度，计算另一流体出口温度
‣ 计算定性温度，计算𝑘
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‣ 计算 NTU，计算𝜀
‣ 计算Φ𝑡与Φ𝑏
‣ 比较Φ𝑡和Φ𝑏，偏差小则设计合理，否则重新取温度直到满足精度要求

效能-传热单元数法相较平均温差法校核敏感性更小

10.5 强化与削弱传热

10.5.1 无源技术（被动）
• 涂层表面
• 粗糙表面
• 扩展表面
• 扰流元件
• 涡流发生器
• 螺旋管
• 添加物
• 射流冲击换热

10.5.2 有源技术（主动）
• 机械搅拌
• 表面振动
• 流体振动
• 电磁场作用促进混合
• 喷/吸流体

10.5.3 热阻分离法
威尔逊图解法：

• 作初热阻-某物理量的线性图
• 作运行一段时间后热阻-某物理量的线性图
• 截距差即为污垢热阻

10.5.4 隔热保温技术
• 保温效率

𝜂 = Φ0 − Φ𝑥
Φ0

(254)

Φ0裸管散热量，Φ𝑥加装保温材料后散热量
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