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1 Preamble
1.1 ODE forms
Definition 1.1.1
n-Order Odrdinary Differential Equation:
for y = y(z), if we have
F(CL’, Y, ylv ooog y(n)) =0
(n) ’ (n—1) @
or y™(z) = f(z,y, 9,y V)
then it’s called n-Order Odrdinary Differential Equation
s
1.2 Solutions
Definition 1.2.1
n-Order ODE Solutions:
ify=¢p(x) e C™in I,
ie. F(z,0(x),¢ (), ¢"(x)) =0, Vz el (2)
e y = p(z) is a Particular solution to the above ODE in I
o y=op(z,C},C,,...,C,) is General solutions in I, if C},C,, ..., C, satisfies:
dp Oy Oy
ac, ac, " aC,
_ oo’ 0y’ 0y’
D 3 /, //, ceey n—1 e con
(.97, ¢", 0" ) st |55 56 | +0 (3)

D(017025"'7Cn)
O™ O™ o™
ac, ac, = aC,

which means C}, C,, ..., C,, are Independent

solution

e if particular solution can not be expressed in form of general solution, then it’s called Singular

@ Note
I =a,b], [a,b), (a,b], (a,b)is OK
I=(1,2)U(2,3), (1,2) U(3,4) is wrong
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1.3 Solution Methods
@ Note
o Guess
e Separation of Variables
e Integrating Factor
e Iteration
e Subsititution
1.4 Existence and Uniqueness of Solutions
e Subsidiary Conditions:
» Boundary Conditions
» Initial Conditions
o RHBUER
Theorem 1.4.1
if Cy, G, ...,C,, are Independent, for 5 f# A (or FJ{E A7)
y™ = f(z,y,9', ...,y V)
1 @
(v:9/s 9™ )= (W0 Y15+ Yna)
D(p, ¢, ..., oD
if lg%(o Cji ., 80, Cn)) # 0, in form of general solution we have
Cf = Ci(20, Y0, Y15 -+ Yn—1)
CZ* = C’Z(J"07 Yor Y15 -+ yn—l)
) (5)
\Cﬁ = G, (%0, Y0, Y1) -+ Yn—1)
=>we get particular solution: y = p(z; Cy, C5, ..., Cr)
0

1.5 Slope Fields and Solution Curves

@ Note
ODE < Slope Fields

Solutions <= Intergral Curves
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2 First-Order Differential Equation
2.1 Basic Concepts
Definition 2.1.1
1st-Order Odrdinary Differential Equation:
for y = y(z), if we have
F(z,y,y') =0ory" = f(z,y) (6)
then it’s called 1st-Order Odrdinary Differential Equation
&
e Explicit
dy
= _ 7
o = @) (7)
e Implicit
dy
F — | =0 8
Definition 2.1.2
if y = p(z) € C'(a,b) and satisfies
F(z, o(z), ¢'(z)) = 0 or ' (z) = f(z, p(z)) (9)
then y = ¢(z) is a solution to the above ODE on (a, b)
and for y = p(z,C;) is a set of solutions
s
2.2 Linear First-Order ODE
Solution I - Integrating Factor
For Linear 1st-Order ODE like:
dy
dz + P(z)y = Q() (10)
y(zo) = Yo
P(z),Q(x) are continuous.
.
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mutiply both sides by Integrating factor el P@)dz e have
(g_y + P(l’)y) efP(z) do _ Q(w)efP(w) dz
: (1)
— Dx (yefP(x)dx) — Q(w)efp(x)dw
e general solution:
yze‘fp(w)d” (/Q(x)efp(m)dw dcc+01) (12)
e particular solution:
y= g Jup Fle)ds (/ Q(m)efzo PO g5+ y0> (13)
’ v
2.2.1 Homogeneous LODE
y = Pz)y (14)
l.y=0ory#0,Vz el
:I Proof by contradiction: E
E Assume Jy = p(z), s.t. p(z;) =0 and Vz € (z, 5], p(z) >0 (15) |
i = Va € [z3,2,], ¢/ (z) = P(z)p(x) (16)
E = [ ¢ fods = P(a) ar)
: Z3 1
E To p(zs) :
| = lim <p’/<pds=/ de/p — oo (18) |
: Tg—Tq s 0 !
; Contradiction. E
1. P(z) € C(I) =>f#1E] LT
2. HARGEH N — AL ]
2.2.2 Non-homogeneous LODE
¥ = Px)y+ Q(z) (19)
L. W IR A7 LR ME—
y(zo) = Yo
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(Uniquness) Proof by contradiction:

Assume 3 Solution y; # y,

e y; —y, = 0, Contradiction.

| = (1~ 1) = P@)(; — )

e Yy, —y, # 0 but (y; —y,)(zy) =0, Contradiction.

_______________________________________________________________________________________

1. P(x),Q(x) € C(I) =fR1El F1FTE

2. jEf#ELER): Non-homogeneous @ fif = Homogeneous #ifi# + Non-homogeneous 4 i

3. BMMFEE: ¢y + oy {zi i iggzi Ig;g; Ry = P(x)y +c;Q () + cyQq () HIfE

2.3 Non-linear First-Order ODE

Solution II - Separable Equations

m )

For 1st-Order ODE like:
dy
(¥ — H) = 6@, =0 @)
N
® h(y) #0
dy /
—— = [ g(z)dzr = y = o(z,C 23
|- [o@ 0(2,G)) 23
* h(yy) =0
Yy =y, is a constant solution (24)
v
E Example 1. E
: ) y :
: 2 1
: but for z, we have E
E de 2z—9y% 2 E
! ET = —T— y 1
: dy y y (26)
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________________________________________________________________________________________

Example 2: Logistic Model(A &2 &),
dP P
{—dx _kP(l—M)P(a:_O)—PO (27)

Step 1. if By # 0, # M

| o= = [ ke

= Mo (29)

In

M—-P

M—P B M
= 4+C —Mkx P = 0
P I T BT (M -_Be e

Step 2. if By =0o0r fy =M

2 dy

0 Za/ce [0, 1]
But for y = { (:75 13 /’27 2> 1 still satisfies. = oo solutions

_____________________________________________________________________________________

BM
P= : 29
By (M — Rye 1% 2
still holds true. O

2.3.1 Separable Equations
o WE T A — A7 EME—fi#
: Example 1. E
: 3 :
: 7 = =Y 1
: {y 2Y (30) !
y(0) = !
: Step 1. y =0 E

m )

y = P(x)y*, a >0
ok -
e o = 1,3! solution
e «a < 1,00 solutions
e o > 1,3! solution
.

o REESREA IR X A LigEsk
o HAFEMIIIXIE], A FERIE S SRR RAAAEX F AR
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o yHR, v A —EAR
Solution III - Subsititution

For Homogeneous 1st-Order ODE like:
dy y)
= _plZ 32
dz (w (32)
.
let v = Q, then y = vz, we have
77
d
:1:£ = F(v) — v (33)
Step 1. F(v) — v # 0, then it’s a separable equation
dv  dz
Flv)—v =
(34)
:>F(v)—v:C’x:>F(g) Ao
x 73
Step 2. F(vy) — vy = 0, then b vy = Y = vy is a constant solution
77 0
2.3.2 Homogeneous Equations
Definition 2.3.1
n-th order Homogeneous Function:
for F(z,y), if VA # 0, F(Az, \y) = \"F(z,y), then it’s called n-th order Homogeneous Function
s
. Example 1. E
: ,_ Tty
: y = (35) !
1 r—y :
: Az+Ay z+y . :
' Step 1. VA # 0, f(Az, Ay) = = —1st order Homogeneous Equations ;
: Ar—Ay T—y !
| 1 dy 1 d :
E Step2.let)\:g,wehave£:1i_z§z$x£:F(v)—v i
E Example 2. E
| 1 5
: F_ZXYS (36)



-
o
o
2
=
=
&6
g
s

e e e e e e e e e e = e e e e e e e e e e e e e,

. 0
& &,
=l =
— | N
+ | MmN |
wlus
I Il
I 3 «@

, then we have

T+ o
y+8

f =
Y
and

IIIIIIIIIIIIIIII

1
let u = y/z*, then v’ = ;(f(u) —u)

Example 3.

IIIIIIIIIIIIIIII

IIIIIIIIIIIIII

=)

<#

N—

)

=Y

ly =
& &
= %
I _
O
S S

let u=ze Y, then y =Inxz — Inu, zu’

Example 4.

IIIIIIIIIIIIII

)
1
S 1
han )
~— 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
"
—~ 1
8 1
| 1
Y 1
&3 _
IS :
I :
- o
| "
1
— 1
/W\I/_ "
S~ DI
gl
S~
Il |+
Il
1
>
ks

Example 5.
e let u =ye ®, then y = ue®, u’

e let t = €%, then z = Int,

IIIIIIIIIIIIIII

> 8 =

2 8= 3
= — > 8 =
G G +
< = + =
+ T 8 =

> 8 ﬂu I Il
I ~ >
N > = 8
S 8

Example 6.

IIIIIIIIIIIIIIIIIIIIIIIIIIIII
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2.3.3 Bernoulli’s Equations (Jakob, 1695)

For Bernoulli’s Equations like:

{j—i + P(a)y = Q(a)y®, o # 0,1y(zy) = yq

P(z),Q(x) are continuous.

let z = y'~@, then y = 22/ we have

j_; +(1-a)P@)z = (1-)Q(z)

which is a linear equation in z.

if @« > 0, then y = 0 is a constant solution.

(47)

2.3.4 Ricatti’s Equations

For Riccati’s Equations like:

{1 Py + @ = K@) = v,

P(z),Q(x), K(x) are continuous.

(48)

if we have a particular solution y,;, let u = y — y;, then wu satisfies

Yt Pla)u+ 2Q()yru + Qau? = 0

which is a Bernoulli’s Equations in wu.

(49)

Special Forms(D.Bernoulli, 1725; Liouville, 1841)

4k
2k+1

y’+y2=bmm,m=0,—2,—

(50)

11




Jingyuan XU ODE

Example 1.

c
o Guessy; = — = c=—2,3, let u=y—y; we have
x

6
u’+;u+u2=0 (52)
o let u =2y < y = u/x, we have
.2
o — 6—u“+u (53)
x
:' Example 2. E
y +y* = ba™ (54)
E find (&,n) s.t. :
: dn ;
: _° = ph&N 55 1
; g tT = (85)
| 1 :
' y=— —m/(m+1) '
: _ N dn o 1 /(m+1 _ . m :
: S DR _P2b( pb T :
| U E
: y=£—€%n :
1 d 1
8,1 =T tin=—m—a :
: i d¢ :

2.3.5 Total Derivative Equations

m )

For Total Derivative Equations like:

M(z,y)dz + N(z,y)dy =dF(z,y) =0

dy (56)
£|z‘=zo = Yo
M(z,y), N(z,y) € C'(D), N(z,y) # 0. D is Simply-Connected
N

12
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we set F'= (M, N), if

OM  ON
8—y—%0rVXF—O (57)

, then it’s an Exact Equation, and we have

IF(z,y), s.t. g—i = M(z,y), 2—5 = N(z,y) (58)
= F(z,y) = C; (General Solution) (59)
if
%—A;#%%oerF#O (60)
,let u(z,y) # 0 be an Integrating Factor, s.t.
puMdz + pNdy =dG =0 (61)
is an Exact Equation.
e 2-Dimension:
V x (uF)=0

=

o 3-

= VuxF+uVxF=0
= Fx (VuxF+uVxF)=0
Vinp- F F x (VxF)

= Vhpy= —
VIRE= TR [P
63
('u, = /J,(x) = U= e*f("VXFH)/N ( )
Oplnp =0, Inp — ——o— dG=Y,dG;=Y, u; dF;
N IV x F| =) General: ui<x,y>gi<Gi>,{F=zi ar
6y lnu = Maz ]nu + T w= ,u(a;, y) = dG=p,g,(G;)F
Homogeneous: p(z,y) = 1/(xM + yN)
\
Dimension:
V x (uF) =0

= VuxF+uVXxXF=0
(64)
= Vu- (Vux F+uV x F)=0

= Vu- (VxF)=0

13
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Nature of Problem Integral Factor After Correction
Field Theorem F=(M,N),VxF#+0 Scalar Field G = (uM,uN),VxG=0,G=Vyg
Differential Form | 1-form: w = M dz + N dy is not closed 0-form new 1-form: n = pw is closed and n =dg
Coordinate A Transformation: (0,G) is straight (Trivial!)
(z,y) is twisted
Transformation (z,y) = (X,Y) = (0,G) also for p = p(z + y), u(zy), p(F)

2.3.6 Implicit Form and Singular Solution

m )

E,,(z,y,p) # 0

Assume F,F,, F, € C(I)

) y?

Y = f(z,y) = F(z,y,9') =0 (65)
On Space of (z,y,y’) we have 2-D Surface F(z,y,y’) = 0, then projection to planar z-y we have
Solution Curve
.
Step 1. For F(z,y,p) = 0 we have parameter equation
{z=a(s,t)y =y(s,t)p = p(s,1) (66)
Step 2. dy = pdx
= dy(s,t) =y, ds +y, dt = p(s,t)(x,ds + z, dt) (67)
Step 3. Eq.(67) to Eq.(66)
0
Definition 2.3.2
For (x) F(z,y,y’) =0, if y = ¢(x) is a solution on I we have solution curve I' = {(z, ¢(x)),z €
I} if Vp € T, 3 Another solution (partialerent in I') is Tangent with p in U(p), we call it as Singular
Solution
»
. o Necessary Condition: E
| F(z,y,p) =0 :
| 68)
; {E)(x,y,p) =0, dy =pdz (68) |
. e Sufficient Condition: E
F(z,y,p) = 0 |
?(w,y,p)=g, dy = pdz (69) |
| (T, Y, p) # !

14
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2.3.7 Order-Reduction of Higher Order ODEs

m )

For y" = f(z,y,y’)

if y” = f(x) =just intergral
if y" = f(z,y') =let p=y',p" = f(z,p)

if y™ = f(z,y" V) =let p =y Y, p’ = f(z,p)
dp dp

.f 4 = 4 1 t = b == = pD— =
ify" = fly,y') =let p=y', — ay f(y,p) )
Example 1. For E
ly”] :
k= = const (70)
(1+ y/2)3/2 :
let p =1v’, then E
| p :
k= =k(z+C, :
(+7  irg et :
, k(z +C z+C (1)
T _\/1—(k2(x41-)0)2: 1 1 2 E
! \/k_2 —(z+C) :
1 :
— o) =~ E+C) + G (2) |
1 i
= -G+t Ol =g (13) |
Example 2. E
dy 2 d?y :
—= — yy— = 4 1
(d:r) Yiz? 0 (74) :
let p = j—z, then i
dp !
2, 9P .
PPy, (75)
=>p=00rp—yj—§=0 (76) E
— y = Che&r® (77) E

________________________________________________________________________________________

15
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3 LODESs and Higher Order LODEs

3.1 Formalization of LODESs

Definition 3.1.1

LODE Standard Form:

Y™ = f(t) +po )y + pr ()Y + .. + Dy D)y (78)
let
z,(t) = y(t)
4 (t) = y/ (t) (79)
., (t) =y (¢)
then
2\ (010 ..0)\/(z 0
x2:(:)01'..(:) x:QJro (30)
,, P1 P2 P3 - Pp) \Tp f(@)
or
X' = A{t)X + B(t) (81)
&
For A,B e C(I)
X'(t) = A(t) X (¢t) (82)
General Solution:
1
X(t) = (X, (t), Xo(0), -, X, ()| 7 | = @()C (83)

Lemma 3.1.2 (Wronsky Determinant)

(X, (t), X5(¢), ..., X,,(t)) are independent solutions < det(®(t)) = W(t) #0,Vt € I

n

Lemma 3.1.3 (Liouville Formula)

(X,(8), X5 (1), -, X, (£)) are solutions = W (¢) = W (tg)elr A

n

16
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Theorem 3.1.4 (Existence and Uniqueness)

:I For (¥*) :
| X'(t) = A()X(0) + B(2) 50 |
: X(tg) = Xq E
E and A, B € C(I),t, € I = [a,b] = 3 Solution X(¢) in I |
Existence Proof.
Proof. I (¥)«= X = X, + [ [AX + B]ds
0
II. Picard Iteration Series
Xo(t) = X (85)
t
X1 (t) = Xo + [ [A(s)Xy(s) + B(s)]ds (86)
to
III. Cauchy Series
let t € [ty,b] = J
t
1,0 - Xo(0)] = | [ (4%, + Blds
to
t t
< [ 1A%+ BN ds < [ 1ANX] + 181} ds (87)
tO tO
< {supnAu 1%l + supuBn}(t ~ty)
tel tel
let C = sup|A|, D = C| X + sup| B
H =347k
D[C(t—t,)"
X, — X,y < 2OE Wl
t t
||Xk+1 - Xk” = ‘ / A(Xy — Xp4)ds|| < C| Xy — Xj_1]ds (88)
tO tO
< /t DIC(t—ty)]* . DC*(t —t,)**
=J, C k! (k+1)!
m D & [O(t—ty)]*
X, - X0 < Y 1% - Xl < 2y L
j=k+1 k+1 :
D m . k 89
<= Z [Cl—a)l" — 0 which is Taylor extension of €®~¢ at (b —a) — 0 (89)
c k+1 k!
= e >0,YVm, k> 0,Vt € J st. |X,, — X,| <e —HIsk
D =

17
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ODE &Y

thus

t

lim X, (t) = X(t) = X, + lim [ [A(s)X,_1(s) + B(s)]ds

n
n—oo n—oo
tO

=X, + / nli_}ngo[A(s)Xn_l(s) + B(s)] ds

t
=X, + / [A(s)X(s) + B(s)]ds
to
Uniqueness Proof.

Proof. If 3X,Y, then

= [ X(®) =Y (@) < / [ A X (s) = Y(s)] ds

0

= [X = Y|(t) <0-exp (/ A X (s) =Y (s)] d8> =

— X=Y

0 (Gronwell)

Forms(Inhomogeneous)

For A,B e C(I)
{X’ (t)=A(t)X(t) + B(t)

Special Solution:

General Solution:

X(t) = X*(t) + ®(t)C

= ®(t) (/t & 1(5)B(s)ds + C)

_ (1) / &-1(5)B(s) ds + ®(£) B (t,) X,

0

(92)

(94)

18
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3.2 Solution of LODEs

Theorem 3.2.1 (Homogeneous)

For A,B e C(I)

X'(t) = A(t)X(t)
95
{X(to):Xo (95)
if Exchangeability satisfies
t t
A1) - / A(s)ds = / A(s)ds - A(t) (96)
to to
then
! A(s)ds o~ D™(t)
X() = ePOX = oAt x N~ 2 Wy
(t)=e o =€ 0 7;) ml 0 (97)

if A is constant matrix

e A has n independent eigenvectors v,, v, ..., v,, with eigenvalues A;, Ay, ..., A

P'AP =diag(\, Ay, ..., \,) = A => AP = PA, P = (v, v,,...,v,) (98)

= X,(t) = eAlh)y, = eXilt~holy,, v, = X (t) (99)

Assume t, =0 = X (t) = Z c;etitv, = PerC = eA PC = ®(t)C

=1 X, (100)

e

R = e e

@ Note

it A\ 1, A 425, A, are complex,we can have real value solutions:

(1) = (eMtvy, eMto,, .., e, Re(eMto, ), Im(eM+1to, ), ..., Im(erreto, )
(101)
s=(n—r)/2

.o A have k(k < n) independent eigenvectors, each multiplicity number is n;,1<j<k :
| (A-XNE) ", =0(82n;), A= PIP! (102) |
: Lip) — »At L _ it (A=XE)t,.l :
: X;(t)=e t'vj—eﬂe( J)'vj :
E At t? 2 ! ng=l| 0 Jitod (103) E
: = e’ E+t(A—/\JE)+§(A—/\JE) ++W(A—)\JE) ’Uj=61’Uj :
1 J : i
: ®(t) = (X1, X7, ..., X1 o, Xi*) (t) (104) |

19
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4 General Theory of ODE

4.1 Existence and Uniqueness of Initial Value Problems

J

Definition 4.1.1 (Equicontinuous)
For {f,(z)} on I = [a,b]
if Ve >0, Vn =1,2,..,36 = §(¢) > 0, s.t. V|z; —z;| < 8= |f,(x;) — fo(z;)| <e

then {f,(x)} is Equicontinuous on I.

‘ (
J

Definition 4.1.2 (Uniformly Bounded)
For {f,(z)} on I = [a, b]
if 3K, st. Vn=1,2,..., Ve eI, |f, (2)| < K
then {f, (x)} is Uniformly Bounded on I.

. *)
Lemma 4.1.3
A C I is Dense Point Set of I, {f,{z}} is Equicontinuous over I,
if Vo, € A, {f,{z;}} is Cauchy Sequence, then {f,{z}} = f(x) is Continuous on I.
v

Theorem 4.1.4 (Arzela-Ascoli Theorem)
For {f,(z)} on I = [a,b]

if {f,,(z)} is Equicontinuous and Uniformly Bounded on I,

then at least 3 one {fnk (m)}, s.t. f,, () =X f(z) is Continueous on I

4.1.1 Peano Theorem of Existence

Theorem 4.1.5 (Peano Theorem)

For
dy
dz = f(=z,y) (105)
Y(zo) = Yo

if f(z,y) € C(D), D= {(z,9)| |z — 20| < a,|y —yo| < b}

then at least 3 one y = p(z) on [xq — h,z, + A,

h:mm(a,i), M= sw |f(y) (106)
M {(@,y)eD}

o &3] Euler #1£=1F VT fif=1IE B & Arzela-Ascoli # ={IF 17 1EfF
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4.1.2 Picard Theorem of Uniqueness and Existence
Definition 4.1.6 (Lipschitz Condition)
For f(z,y) on G
if for V Bounded Close Set K C G, 3Ly > 0, s.t.
V(z,91), (2,92) € G, |f(2,91) — f(2,92)| < Liclys — v (107)
then f(z,y) satisfies Lipschitz Condition on G.
if L is independent of K, then f(z,y) satisfies Global Lipschitz Condition on G.
&
Theorem 4.1.7 (Picard Theorem)
For
dy
dr f(z,y) (108)
y(z9) = o
: of
if .f(xay)a a_y € C(D)7 D= {(x,y)I |.’17 _‘TO| <a, |y_y0| < b}
then 3! one y = p(z) on [zy — h,zy + A,
b
— ( —), M= sw |f(zy) (109)
bl {(@w)eD}
v
o FFTEME: $F] Picard ERUF I = EWEL A i+ —20E R =1L — B0l 8= A7 TE ISR
o ME—M: (RIAFTEMA =14 18 Z (BB =FI ] Gronwall 745G ZZE R %E N 0
Lemma 4.1.8 (Gronwall Inequality)
if u(z) is Non-negative Continuous Function on [z, z;], and
u(z) < C+ / (a(s)u(s) + K)ds (110)
To
where C, K > 0, a(x) is Non-negative Continuous Function on [z, 2],
then
J7 a(s)ds
u(z) < (C+ K(z — xp))e o (111)
when C = 0, then u(z) =0 on [z, z,].
v
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Definition 4.1.9 (Osgood Condition)
For f(z,y) € C(G) and satisfies
|f(z,y1) — f(z,92)| < F(lyr — y2l) (112)
where F(r) > 0 € C(0,+00), and
"o dr
= 400 (113)
/0 F(r)
then f(z,y) satisfies Osgood Condition on G.
»
Theorem 4.1.10 (Osgood Theorem)
For
dy
— = 114

o(z) exists on G

if f(z,y) € C(G), and f(z,y) satisfies Osgood Condition on G then at most only one solution y =

v
4.1.3 Cauchy Theorem of Existence and Uniqueness
Theorem 4.1.11 (Cauchy Theorem)
For
dy
dz = f(z,y) (115)
y(zo) = Yo
if f(x,y) is real analytic function over D = {(z,y)| |z — z,| < a, |y — yo| < b}
then 3! one real analytic solution y = ¢(x) on U(z)
v
HUERH: 8% (Majorant series method)
Proof. let (z4,yo) = (0,0), Then on D,
flz,y) = Z aijxiyj (116)
4,j=0
if y = ¢(x) is real analytic solution, then
b(x) = 3 ba” (117)

n=1

and b; = p;(a,,,), where p; is a polynomial of a,,,,0 < m,n <i—1.

mn?

Consider
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M
(=3 0=)
r r
where M is const, r = min{a, b}, F is majorant funtion of f, i.e.
F(z,y) = Z Aijwiyj (119)
§,j=0
where |aij’ < A;;, we could have serires
> A (120)
=0
where A; = p,;(A4,,,), it’s true that this series is majorant series of series defined by ¢(x)
For
dy
—=F 121
Y~ Flay) (121)
we have
y? z
——=—rMIn(1—— 122
y—o =T n( T) (122)
y=<I>(x)=r—r\/1+2M1n(1—§) (123)
and ®(z) is analytic where |z| < p=r(1—e /M) = ZZO bzt = ¢(z)
O

4.2 Extension of Solution

Lemma 4.2.1 N

For f(z,y) € C(G) and

) (124)

e if p(x) is one solution over [z,,b) and for {(z, ¢(z)) : z € [zy,b)} C A C G, where A is compact set

then y = ¢(z) could be extended to [z, b]
o if p(x) € [xy,b], Y(x) € [b, c] are solution, and ¢(b) = 1 (b), then

oy = {52 20575 s

is a solution over [z, c]

V)

el (1) BE=A ==l R SRR, BT R =1L 75 R0 b X ) T
IER (2): y(o)fEbAb e EES: HAG W W H AR SHGES:, bR
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Theorem 4.2.2
For f(z,y) € C(G), (zy,yy) € G and T is integral curve of
dy
= = 126
o=@ (126)
through (zy,y,), then I' could be extended to 0G
v
Definition 4.2.3 (Saturated Solution)
o(z) is one solution of the problem over I, ¥(z) is another solution over (a,b;) D I
o if Vo €I, p(x) = ¢(z) then ¢(z) is extendable and ¥(z) is a extension of ¢(x) over (aq,b;)
e if not exists 1(x), then ¢(x) is saturated
»

Theorem 4.2.4

if f(z,y) € C(GQ), G C R? and satisfies Lipschitz condition for y, then for ¥(z,y) € G, 3! saturated

solution through it.

Q

HERH - SR VR =R B FE A & _ LW R 5 FF = 1 25 11512 A AR 3% 42 HLi /& Lipschitz 25 =H
Picard %P 1FZ s 4RI ME— =7 )&

4.3 Global Existence of Solutions

Theorem 4.3.1

For f(z,y) € C(R) where R = {(z,y)|a < x < b, |y| < +o0}, and satisfies Global Lipschitz Con-

dition for y, then for

((il_'?; = f(.'L‘, y) (127)

then every saturated solution is confined to (a,b)

Theorem 4.3.2 (1st Comparison Theorem)

For f(z,y), F(z,y) € C(G), y = ¢(x) and y = ®(x) are solutions of

(Cil_?; = f(@", y) (128)
Y Py (129)

on [zy,b), y(zy) =y, and if V(z,y) € G
f(z,y) < F(z,y) (130)

then for z € (z,b), ¢(z) < ®(z)
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Definition 4.3.3
on [zy,b), if
dv dy dw
<f(may)=d_<d_v
z z (131)

dz
v(zo) < yo = y(@o) < w(wo)
then v(z), y(z), w(xz) are called Lower Solution(Right), Solution(Right), Upper Solu-
tion(Right) respectively.

Theorem 4.3.4

for f(z,y) € C(I), if v(z), w(x) are Lower Solution(Right), Upper Solution(Right) on [z, b) of

Y~ F@v), vl = v (132)

then on (z,b)

v(z) < y(z) < w(x) (133)

Theorem 4.3.5

if f(z,y) € C(R) where R = {(z,y)|zy < z < 2y + a,|y — yo| < b}, then for

P = @) vlm) =u (134)

then there exists lowest solution and uppest solution y = V(z) and y = W(z) on [zy,z, +

h], where

b
h<a= min(a, —),M = sup |f(z,y)] (135)
. (z.9)eR

i.e. for any solution y = ¢(z) on [zy, z, + A,

V() < plz) <W(z) (136)

v
Theorem 4.3.6 (2nd Comparison Theorem)
if f(z,y) € C(G), where G = {(z,y)| x5 < z < b, |y| < oo}, for (z4,y,) € G and
dy
a = f(:E?y)? y(-To) =Y (137)

the maximum range is [z, 5;)
e if upper solution ®(z) and lower solution ¢(z) have public range [z, §) then §; > S
e if exists upper(or lower) solution ®(z) (¢(z)), and its maximum range is [z, §), where z — ~, ®(z) —

—oo (or p(x) = +oo) , then §; < f
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4.4 Continuous Dependence of Solutions

Theorem 4.4.1 (Continuous Dependence of Evolution Function)

F(z,y), f(z,y) € C(G) and satisfies
|F(£L‘,y) - f(x7y)| <e

f(z,y) satisfies Lipschitz condition for y (Lip const= L) For

d d
ﬁ = f(xay), d_(’; = F(‘T:y)
y(zo) = ¢(zo) = yo

on |z —zy| < o, we have

(138)

(139)

(140)

Theorem 4.4.2 (Continuous Dependence of Initial Value)

G C R is connected, f(z,y) € C(G) and satisfies Local Lipschitz Condition for y if

dy
a _f(way)

y(zo) = g
has unique solution y = ¢(z; z4,y,) on I = [a,b] C G, then over [

lim  o(z; &,n) = o(z; 9, Y0)
(&m—(x0,Y0)

(141)

(142)

Theorem 4.4.3 (Continuous Dependence of Initial Value + Parameter)

f(z,y,A) € C(G,) and satisfies Local Lipschitz Condition for (y, A) if

dy

Pt A A
I flz,y,A)
y(To) = z

has solution y = ¢(x; x4, Yy, Ag) on I = [a,b] C G, then over I

lim I; g, ,)\ x; Tq, ’)\
(57”1’>‘)—>(w0,y0,>\0)¢( &, )j 90( 0: Yo 0)

(143)

(144)

Theorem 4.4.4 (Differentiable Properties of Solution + Parameter)

f(z,y,\) € C(G,) and satisfies Local Lipschitz Condition for (y, \)

fy(@,y, ), fr(z,y,A) € C(Gy) then y = p(z; 2, Yo, A)is Continueous and Differentiabe
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: Oy Ay 0y :
. =T v=—"L w=—-"L 145) |
: 61‘0 8:1/07 3)\ ( ) :
E du :
| {a — £, 20, up, N (146)
: u(zg) = —f(%0: Yo, A) ]
E dv E
: a = fy(CC,QO(J?; anyO’)‘))U (147) E
: v(zg) =1 :
E dw :
: E =fy(a:,<p(a:; w07y07k))u+f>\(w7‘10(x; x07y07)‘)) (148) :
: w(zy) =0 :
4.5 ODEs and Higher Order ODEs
:’ Uniqueness and Existence E
: Extension E
E (J Comparison :
E Continueous Dependence E
4.6 First Integral
Definition 4.6.1
For non-trivial ¢(¢, X) € C*(R"™!) and if solutions of
dX
— =F(t,X 149
— = F(t,X) (149)
could be expressed in
P(t, X)=C (150)
then it’s a First Integral
if 1,(t, X) = C;(1 < j < n) satisfies
6(1/]15 . a'@b )
-~ 0 151
a(xla ’mn) 7& ( )
then they are Independent
rs

the number of First Integral won’t be larger than n at most
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5 Stability Theory

5.1 Lyapunov Stability

Definition 5.1.1 ((Lyapunov) Stable)

For

dx
t € (B, +00)

f(t, x) satisfies Local Lipschitz Condition for  and has a solution = ¢(t)
For Ve > 0, Vt, > 3, 30(ty,e) > 0 s.t. |xy — p(ty)| < 0, and if VE > ¢,
|2 (t; to, 2o) — (D) <€

then = ¢(t) is Lyapunov Stable if § = §(¢) then Global Stable

L

(152)

(153)

Definition 5.1.2 ((Lyapunov) Attractive)

For Vt, > B, 30, (ty) s.t. @y — @(to)] < 8y, and if V¢ > t,,
i [(t; t, %) — (8)] =0

then « = ¢(t) is Lyapunov Attractive if 0, (¢,) = 0, then Global Attractive

@ Note

Asymptotically Stable = Stable + Attractive
Global Asymptotically Stable = Global Stable 4+ Global Attractive

5.2 Stability Analysis

Definition 5.2.1

if we have

(155)

(156)
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then

dx
I A(t)x (157)

is a Linear Approximation Equation

Theorem 5.2.2 N

For

— =A(t)x (158)

we have ®(t) satisfies x(t) = ®(¢t)C
Zero Solution is Stable <= 3K = K(t,) > 0 s.t.

[®(@)] < K, t > 1, (159)

Zero Solution is Stable <= 3K = K () > 0 s.t.
2@ (s)| <K, t>s>p8 (160)
e Zero Solution is Asymptotically Stable <

lim [|®(t)] = 0 (161)

t—+o0

Zero Solution is Global Asymptotically Stable <= IM = M () > 0, a = a(8) > 0 s.t.

@)D 1(s)|| < Me 2t t> s> 8 (162)
v
Theorem 5.2.3 N
For
dx
A 163
g7 T (163)

A; are Eigenvalues of A

e Zero Solution is (Global) Asymptotically Stable <= Vj=1,...,n
Re(};) <0 (164)
e Zero Solution is (Global) Stable <= Vj, k=1,...,n
Re(};) <0, Re()\,) =0, dim(J,) =1 (165)
e Zero Solution is Unstable <= dj,k=1,...,n

Re()\j) > 0 or Re(A,) =0, dim(J,) > 2 (166)
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Theorem 5.2.4
For
dx
i A(t)xr + R(t, x) (167)
if Zero solution of
dx
— = A(t 1
v (t)z (168)
is Global Stable and 36 > 0, and b(t) satisfies
+o0
/ b(t) dt < +o0 (169)
B
then s.t.
|R(E, )| < b)|], t > B, || <o (170)
then Zero solution of (167) is Global Stable
v
Theorem 5.2.5
if Zero solution of
dx
— = At 171
g7 (t)z (171)
is Global Asymptotically Stable and 30 > 0, and b(t) satisfies
t
[ 861 ds <A@t —to) +7(8), t> 1> B (172)
tO
then s.t.
|R(t, )| < bt)|], t > B, || <o (173)
then if 3r > 0 when v < r, Zero solution of (167) is Global Stable
©
Zful Lipshitz 251
For
d
2 _ Az + R(t,z) (174)
de
if R(t,x) satisfies
R(t
im IBEDN ooy s g (175)
lzio ||
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e Zero solution of (174) is Global Asymptotically Stable <= VRe(A,) <0
e Zero solution of (174) is Unstable <= JRe(A4) >0
v
Theorem 5.2.7 (Routh-Hurwitz Laws)
if
P\ =agA"+a, A" 1+ .. +a, ) t+a, (176)
Then for
a; ap 0 0 ... O
az ay a; ag ... 0
An = a5 a4 a3 a2 .es 0 (177)
0000 ..a,
All Real Part of Roots of P, () are negative <= V Leading Principle Minor(MifFE£FK) of A,
are positive
v
5.3 Autonomous System and Lyapunov 2nd Method
Definition 5.3.1 (Lyapunov Function)
V(x) € CU(I), I = {|=| < h}
Based on different some condition below
e I. Postive-Definite: V(0) = 0;V(x) >0, z # 0
D
e II. Negative-Definite Derivate: F‘; =V, V- f<0,z#0
D
e III. Semi-Negative-Definite Derivate: F‘: =V, V- f<0
DV
e IV. Positive-Definite Derivate: Dr = VV-f>0,z#0
&
Theorem 5.3.2
For Autonomous System
dz
e 178
2 _ fa) (179
e I+II — Zero solution of (178) is Asymptotically Stable
o I+IIT = Zero solution of (178) is Stable
e I4+IV = Zero solution of (178) is Unstable
v
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