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1 Preamble

1.1 ODE forms

Definition 1.1.1

n-Order Odrdinary Differential Equation:

for 𝑦 = 𝑦(𝑥), if we have

𝐹(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) = 0

or 𝑦(𝑛)(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1))
(1)

then it’s called n-Order Odrdinary Differential Equation
♣︎

1.2 Solutions

Definition 1.2.1

n-Order ODE Solutions:

if 𝑦 = 𝜑(𝑥) ∈ 𝐶𝑛 in 𝐼 ,

𝑖.𝑒.  𝐹 (𝑥, 𝜑(𝑥), 𝜑′(𝑥), 𝜑𝑛(𝑥)) ≡ 0,  ∀𝑥 ∈ 𝐼 (2)

• 𝑦 = 𝜑(𝑥) is a Particular solution to the above ODE in 𝐼

• 𝑦 = 𝜑(𝑥, 𝐶1, 𝐶2, …, 𝐶𝑛) is General solutions in 𝐼 , if 𝐶1, 𝐶2, …, 𝐶𝑛 satisfies:

𝐷(𝜑, 𝜑′, 𝜑″, …, 𝜑𝑛−1)
𝐷(𝐶1, 𝐶2, …, 𝐶𝑛)

=def

|










 𝜕𝜑
𝜕𝐶1
𝜕𝜑′

𝜕𝐶1
…

𝜕𝜑𝑛

𝜕𝐶1

𝜕𝜑
𝜕𝐶2
𝜕𝜑′

𝜕𝐶2
…

𝜕𝜑𝑛

𝜕𝐶2

…

…

…

…

𝜕𝜑
𝜕𝐶𝑛
𝜕𝜑′

𝜕𝐶𝑛
…

𝜕𝜑𝑛

𝜕𝐶𝑛 |












≠ 0 (3)

which means 𝐶1, 𝐶2, …, 𝐶𝑛 are Independent

• if particular solution can not be expressed in form of general solution, then it’s called Singular 

solution
♣︎

Note

𝐼 = [𝑎, 𝑏],  [𝑎, 𝑏),  (𝑎, 𝑏],  (𝑎, 𝑏) is OK

𝐼 = (1, 2) ∪ (2, 3),  (1, 2) ∪ (3, 4) is wrong
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1.3 Solution Methods

Note

• Guess

• Separation of Variables

• Integrating Factor

• Iteration

• Subsititution

1.4 Existence and Uniqueness of Solutions

• Subsidiary Conditions:

‣ Boundary Conditions

‣ Initial Conditions

• 隐函数定理

Theorem 1.4.1

if 𝐶1, 𝐶2, …, 𝐶𝑛 are Independent, for 定解问题（or 初值问题）

{


𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1))

(𝑦, 𝑦′, …, 𝑦(𝑛−1))|
𝑥0

= (𝑦0, 𝑦1, …, 𝑦𝑛−1)
(4)

if
𝐷(𝜑, 𝜑′, …, 𝜑(𝑛−1))
𝐷(𝐶1, 𝐶2, …, 𝐶𝑛)

≠ 0, in form of general solution we have

{





𝐶∗

1 = 𝐶1(𝑥0, 𝑦0, 𝑦1, …, 𝑦𝑛−1)

𝐶∗
2 = 𝐶2(𝑥0, 𝑦0, 𝑦1, …, 𝑦𝑛−1)

……

𝐶∗
𝑛 = 𝐶𝑛(𝑥0, 𝑦0, 𝑦1, …, 𝑦𝑛−1)

(5)

⟹we get particular solution: 𝑦 = 𝜑(𝑥; 𝐶∗
1 , 𝐶∗

2 , …, 𝐶∗
𝑛)

♡

1.5 Slope Fields and Solution Curves

Note

ODE ⟺ Slope Fields

Solutions ⟺ Intergral Curves
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2 First-Order Differential Equation

2.1 Basic Concepts

Definition 2.1.1

1st-Order Odrdinary Differential Equation:

for 𝑦 = 𝑦(𝑥), if we have

𝐹(𝑥, 𝑦, 𝑦′) = 0 or 𝑦′ = 𝑓(𝑥, 𝑦) (6)

then it’s called 1st-Order Odrdinary Differential Equation
♣︎

• Explicit

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) (7)

• Implicit

𝐹(𝑥, 𝑦, d𝑦
d𝑥

) = 0 (8)

Definition 2.1.2

if 𝑦 = 𝜑(𝑥) ∈ 𝐶1(𝑎, 𝑏) and satisfies

𝐹(𝑥, 𝜑(𝑥), 𝜑′(𝑥)) = 0 or 𝜑′(𝑥) = 𝑓(𝑥, 𝜑(𝑥)) (9)

then 𝑦 = 𝜑(𝑥) is a solution to the above ODE on (𝑎, 𝑏)

and for 𝑦 = 𝜑(𝑥, 𝐶1) is a set of solutions
♣︎

2.2 Linear First-Order ODE

Solution I - Integrating Factor

Forms

For Linear 1st-Order ODE like:

{

d𝑦

d𝑥
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)

𝑦(𝑥0) = 𝑦0

(10)

𝑃 (𝑥), 𝑄(𝑥) are continuous.
♠︎
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Solutions

mutiply both sides by Integrating factor 𝑒∫ 𝑃(𝑥) d𝑥, we have

(d𝑦
d𝑥

+ 𝑃(𝑥)𝑦)𝑒∫ 𝑃(𝑥) d𝑥 = 𝑄(𝑥)𝑒∫ 𝑃(𝑥) d𝑥

⟹ 𝐷𝑥(𝑦𝑒∫ 𝑃(𝑥) d𝑥) = 𝑄(𝑥)𝑒∫ 𝑃(𝑥) d𝑥

(11)

• general solution:

𝑦 = 𝑒− ∫ 𝑃(𝑥) d𝑥(∫ 𝑄(𝑥)𝑒∫ 𝑃(𝑥) d𝑥 d𝑥 + 𝐶1) (12)

• particular solution:

𝑦 = 𝑒− ∫𝑥
𝑥0

𝑃(𝑠) d𝑠(∫
𝑥

𝑥0

𝑄(𝑥)𝑒∫𝑠
𝑥0

𝑃(𝑡) d𝑡 d𝑠 + 𝑦0) (13)

♡

2.2.1 Homogeneous LODE

𝑦′ = 𝑃(𝑥)𝑦 (14)

1. 𝑦 ≡ 0 or 𝑦 ≢ 0, ∀𝑥 ∈ 𝐼

Proof by contradiction：

Assume ∃𝑦 = 𝜑(𝑥), 𝑠.𝑡. 𝜑(𝑥1) = 0 and ∀𝑥 ∈ (𝑥1, 𝑥2], 𝜑(𝑥) > 0 (15)

⇒ ∀𝑥 ∈ [𝑥3, 𝑥2], 𝜑′(𝑥) = 𝑃(𝑥)𝜑(𝑥) (16)

⇒ ∫
𝑥2

𝑥3

𝜑′/𝜑 d𝑠 = 𝑃(𝑥) (17)

⇒ lim
𝑥3→𝑥1

∫
𝑥2

𝑥3

𝜑′/𝜑 d𝑠 = ∫
𝜑(𝑥2)

0
d𝜑/𝜑 → ∞ (18)

Contradiction.

1. 𝑃(𝑥) ∈ 𝐶(𝐼) ⇒解在𝐼上存在
2. 其解集组成一维线性空间

2.2.2 Non-homogeneous LODE

𝑦′ = 𝑃(𝑥)𝑦 + 𝑄(𝑥) (19)

1. 初值问题下存在唯一解

{𝑦′ = 𝑃(𝑥)𝑦 + 𝑄(𝑥)
𝑦(𝑥0) = 𝑦0

(20)
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(Uniquness) Proof by contradiction：

Assume ∃ Solution 𝑦1 ≠ 𝑦2

⇒ (𝑦1 − 𝑦2)
′ = 𝑃(𝑥)(𝑦1 − 𝑦2)

(21)

• 𝑦1 − 𝑦2 ≡ 0, Contradiction.

• 𝑦1 − 𝑦2 ≢ 0 but (𝑦1 − 𝑦2)(𝑥0) = 0, Contradiction.

1. 𝑃(𝑥), 𝑄(𝑥) ∈ 𝐶(𝐼) ⇒解在𝐼上存在
2. 通解结构：Non-homogeneous通解 = Homogeneous通解 + Non-homogeneous特解

3. 叠加原理：𝑐1𝑦1 + 𝑐2𝑦2 {
𝑦′

1 = 𝑃(𝑥)𝑦′
1 + 𝑄1(𝑥)

𝑦′
2 = 𝑃(𝑥)𝑦′

2 + 𝑄2(𝑥) 为 𝑦′ = 𝑃(𝑥)𝑦 + 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥)的解

2.3 Non-linear First-Order ODE

Solution II - Separable Equations

Forms

For 1st-Order ODE like:

{d𝑦
d𝑥

= 𝐻(𝑥, 𝑦) = 𝑔(𝑥)𝑔(𝑦)𝑦|𝑥=𝑥0
= 𝑦0 (22)

♠︎

Solutions

• ℎ(𝑦) ≠ 0

∫ d𝑦
ℎ(𝑦)

= ∫ 𝑔(𝑥) d𝑥 ⟹ 𝑦 = 𝜑(𝑥, 𝐶1) (23)

• ℎ(𝑦0) = 0

𝑦 ≡ 𝑦0 is a constant solution (24)
♡

Example 1. 

𝑦′ = 𝑦
2𝑥 − 𝑦2 (25)

but for 𝑥, we have

d𝑥
d𝑦

= 2𝑥 − 𝑦2

𝑦
= 2

𝑦
𝑥 − 𝑦

⟹ 𝑥 = 𝑦2(𝐶 − ln|𝑦|) or 𝑦 ≡ 0
(26)
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Example 2: Logistic Model(人口模型). 

{d𝑃
d𝑥

= 𝑘𝑃(1 − 𝑃
𝑀

)𝑃(𝑥 = 0) = 𝑃0 (27)

Step 1. if 𝑃0 ≠ 0, 𝑃0 ≠ 𝑀

∫ d𝑃
𝑃(𝑀 − 𝑃)

= ∫ 𝑀𝑘 d𝑥

ln| 𝑃
𝑀 − 𝑃

| = 𝑀𝑘𝑥

𝑀 − 𝑃
𝑃

= ±𝐶𝑒−𝑀𝑘𝑥,  𝑃 = 𝑃0𝑀
𝑃0 + (𝑀 − 𝑃0)𝑒−𝑀𝑘𝑥

(28)

Step 2. if 𝑃0 = 0 or 𝑃0 = 𝑀

𝑃 = 𝑃0𝑀
𝑃0 + (𝑀 − 𝑃0)𝑒−𝑀𝑘𝑥 (29)

still holds true. □

2.3.1 Separable Equations

• 初值问题下不一定存在唯一解

Example 1. 

{

𝑦′ = 3

2
𝑦1/3

𝑦(0) = 0
(30)

Step 1. 𝑦 ≡ 0

Step 2. 𝑦 ≠ 0, 
2
3

d𝑦
𝑦1/3 = d𝑥 ⇒ 𝑦 = ±(𝑥 + 𝐶)3/2

But for 𝑦 = {0, 𝑥 ∈ [0, 1]
(𝑥 − 1)3/2, 𝑥 > 1 still satisfies. ⟹ ∞ solutions

Form

{𝑦′ = 𝑃(𝑥)𝑦𝛼, 𝛼 > 0
𝑦(0) = 0 (31)

• 𝛼 = 1, ∃! solution

• 𝛼 < 1, ∞ solutions

• 𝛼 > 1, ∃! solution
♠︎

• 系数连续解不一定在该区间上连续

• 若存在解的区间，不同初值会导致解的存在区间不同

8
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• 𝑦有界，𝑦′不一定有界

Solution III - Subsititution

Forms

For Homogeneous 1st-Order ODE like:

d𝑦
d𝑥

= 𝐹(𝑦
𝑥

) (32)
♠︎

Solutions

let 𝑣 = 𝑦
𝑥

, then 𝑦 = 𝑣𝑥, we have

𝑥d𝑣
d𝑥

= 𝐹(𝑣) − 𝑣 (33)

Step 1. 𝐹(𝑣) − 𝑣 ≠ 0, then it’s a separable equation

d𝑣
𝐹(𝑣) − 𝑣

= d𝑥
𝑥

⟹ 𝐹(𝑣) − 𝑣 = 𝐶𝑥 ⟹ 𝐹(𝑦
𝑥

) − 𝑦
𝑥

= 𝐶𝑥
(34)

Step 2. 𝐹(𝑣0) − 𝑣0 = 0, then 
𝑦
𝑥

= 𝑣0 ⟹ 𝑦 = 𝑣0𝑥 is a constant solution
♡

2.3.2 Homogeneous Equations

Definition 2.3.1

n-th order Homogeneous Function:

for 𝐹(𝑥, 𝑦), if ∀𝜆 ≠ 0, 𝐹(𝜆𝑥, 𝜆𝑦) = 𝜆𝑛𝐹(𝑥, 𝑦), then it’s called n-th order Homogeneous Function
♣︎

Example 1. 

𝑦′ = 𝑥 + 𝑦
𝑥 − 𝑦

(35)

Step 1. ∀𝜆 ≠ 0, 𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑥 + 𝜆𝑦
𝜆𝑥 − 𝜆𝑦

= 𝑥 + 𝑦
𝑥 − 𝑦

⟹1st order Homogeneous Equations

Step 2. let𝜆 = 1
𝑥

, we have 
d𝑦
d𝑥

= 1 + 𝑦/𝑥
1 − 𝑦/𝑥

⟹ 𝑥d𝑣
d𝑥

= 𝐹(𝑣) − 𝑣

Example 2. 

𝑦′ = 𝑥 + 𝑦 + 1
𝑥 − 𝑦 + 2

(36)

9
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find {𝜉 = 𝑥 + 𝛼
𝛾 = 𝑦 + 𝛽, then we have

d𝛾
d𝜉

= 𝜉 + 𝛾
𝜉 − 𝛾

(37)

and

{




𝛼 = 3
2

𝛽 = −1
2

(38)

Example 3. 

𝑦′ = 𝑥𝑘−1𝑓( 𝑦
𝑥𝑘 ) (39)

let 𝑢 = 𝑦/𝑥𝑘, then 𝑢′ = 1
𝑥

(𝑓(𝑢) − 𝑢)

Example 4. 

𝑥𝑦′ = 𝑓(𝑥𝑒−𝑦) (40)

let 𝑢 = 𝑥𝑒−𝑦, then 𝑦 = ln 𝑥 − ln 𝑢, 𝑥𝑢′ = 𝑢(1 − 𝑓(𝑢))

Example 5. 

𝑦′ = 𝑦𝑓(𝑦𝑒−𝑥) (41)

• let 𝑢 = 𝑦𝑒−𝑥, then 𝑦 = 𝑢𝑒𝑥, 𝑢′ = 𝑢(𝑓(𝑢) − 1)

• let 𝑡 = 𝑒𝑥, then 𝑥 = ln 𝑡, d𝑦
d𝑡

= 𝑦
𝑡
𝑓(𝑦

𝑡
)

Example 6. 

𝑦′ = 𝑦
𝑥

+ ℎ(𝑥)𝑓(𝑦
𝑥

) (42)

𝑥𝑦′ = 𝑦 + ℎ(𝑥)𝑓(𝑦
𝑥

) (43)

𝑦′ = 𝑦

𝑥 + 𝑓(𝑦
𝑥

)
(44)

𝑥𝑦′ = 𝑦
ln 𝑥 + 𝑓(𝑦)

(45)

10
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2.3.3 Bernoulli’s Equations (Jakob, 1695)

Forms

For Bernoulli’s Equations like:

{d𝑦
d𝑥

+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝛼, 𝛼 ≠ 0,1𝑦(𝑥0) = 𝑦0 (46)

𝑃 (𝑥), 𝑄(𝑥) are continuous.
♠︎

Solutions

let 𝑧 = 𝑦1−𝛼, then 𝑦 = 𝑧1/(1−𝛼), we have

d𝑧
d𝑥

+ (1 − 𝛼)𝑃(𝑥)𝑧 = (1 − 𝛼)𝑄(𝑥) (47)

which is a linear equation in 𝑧.

if 𝛼 > 0, then 𝑦 ≡ 0 is a constant solution.
♡

2.3.4 Ricatti’s Equations

Forms

For Riccati’s Equations like:

{d𝑦
d𝑥

+ 𝑃(𝑥)𝑦 + 𝑄(𝑥)𝑦2 = 𝐾(𝑥)𝑦(𝑥0) = 𝑦0 (48)

𝑃 (𝑥), 𝑄(𝑥), 𝐾(𝑥) are continuous.
♠︎

Solutions

if we have a particular solution 𝑦1, let 𝑢 = 𝑦 − 𝑦1, then 𝑢 satisfies

d𝑢
d𝑥

+ 𝑃(𝑥)𝑢 + 2𝑄(𝑥)𝑦1𝑢 + 𝑄(𝑥)𝑢2 = 0 (49)

which is a Bernoulli’s Equations in 𝑢.
♡

Special Forms(D.Bernoulli, 1725; Liouville, 1841)

𝑦′ + 𝑦2 = 𝑏𝑥𝑚, 𝑚 = 0, −2, − 4𝑘
2𝑘 ± 1

(50)
♠︎
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Example 1. 

𝑦′ + 𝑦2 = 6
𝑥2 (51)

• Guess 𝑦1 = 𝑐
𝑥

⟹ 𝑐 = −2, 3, let 𝑢 = 𝑦 − 𝑦1 we have

𝑢′ + 6
𝑥

𝑢 + 𝑢2 = 0 (52)

• let 𝑢 = 𝑥𝑦 ⟺ 𝑦 = 𝑢/𝑥, we have

𝑢′ = 6 − 𝑢2 + 𝑢
𝑥

(53)

Example 2. 

𝑦′ + 𝑦2 = 𝑏𝑥𝑚 (54)

find (𝜉, 𝜂) 𝑠.𝑡. 

d𝜂
d𝜉

+ 𝜂2 = 𝑏𝜉𝑛 (55)

𝛼 :

{




𝑦=
1
𝑝𝜂

𝑥=
(


𝑚 + 1
𝑝𝑏

𝜉
)


1/(𝑚+1) ⟹ d𝜂
d𝜉

+ 𝜂2 = 1
𝑝2𝑏

(𝑚 + 1
𝑝𝑏

𝜉)
−𝑚/(𝑚+1)

, 𝑛 = − 𝑚
𝑚 + 1

𝛽 :
{

𝑦=𝜉−𝜉2𝜂

𝑥=
1
𝜉

⟹ d𝜂
d𝜉

+ 𝜂2 = 𝑏𝜉−𝑚−4, 𝑛 = −𝑚 − 4

Key: {𝑦 = 𝐹(𝜂)
𝑥 = 𝐺(𝜉)

2.3.5 Total Derivative Equations

Forms

For Total Derivative Equations like:

{

𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = d𝐹(𝑥, 𝑦) = 0

d𝑦
d𝑥

|𝑥=𝑥0
= 𝑦0

(56)

𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦) ∈ 𝐶′(𝐷), 𝑁(𝑥, 𝑦) ≠ 0. 𝐷 is Simply-Connected
♠︎
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Solutions

we set 𝑭 = (𝑀, 𝑁), if

𝜕𝑀
𝜕𝑦

= 𝜕𝑁
𝜕𝑥

 or ∇ × 𝑭 = 0 (57)

, then it’s an Exact Equation, and we have

∃𝐹(𝑥, 𝑦), 𝑠.𝑡. 𝜕𝐹
𝜕𝑥

= 𝑀(𝑥, 𝑦),  𝜕𝐹
𝜕𝑦

= 𝑁(𝑥, 𝑦) (58)

⟹ 𝐹(𝑥, 𝑦) = 𝐶1 (General Solution) (59)

if

𝜕𝑀
𝜕𝑦

≠ 𝜕𝑁
𝜕𝑥

 or ∇ × 𝑭 ≠ 0 (60)

, let 𝜇(𝑥, 𝑦) ≠ 0 be an Integrating Factor, s.t.

𝜇𝑀 d𝑥 + 𝜇𝑁 d𝑦 = d𝐺 = 0 (61)

is an Exact Equation.

𝜇(𝜕𝑁
𝜕𝑥

− 𝜕𝑀
𝜕𝑦

) = 𝑁 𝜕𝜇
𝜕𝑦

− 𝑀 𝜕𝜇
𝜕𝑥

(62)

• 2-Dimension:

∇ × (𝜇𝑭) = 0

⟹ ∇𝜇 × 𝑭 + 𝜇∇ × 𝑭 = 0

⟹ 𝑭 × (∇𝜇 × 𝑭 + 𝜇∇ × 𝑭) = 0

⟹ ∇ ln 𝜇 = ∇ ln 𝜇 ⋅ 𝑭
‖𝑭 ‖2 𝑭 − 𝑭 × (∇ × 𝑭)

‖𝑭 ‖2

⟹

{




𝜕𝑥 ln 𝜇 = 𝑀
𝑁

𝜕𝑦 ln 𝜇 − ‖∇ × 𝑭‖
𝑁

𝜕𝑦 ln 𝜇 = 𝑁
𝑀

𝜕𝑥 ln 𝜇 + ‖∇ × 𝑭‖
𝑀

⟹

{







𝜇 = 𝜇(𝑥) ⇒ 𝜇 = 𝑒− ∫(‖∇×𝑭‖)/𝑁

𝜇 = 𝜇(𝑦) ⇒ 𝜇 = 𝑒∫(‖∇×𝑭‖)/𝑀

𝜇 = 𝜇(𝑥, 𝑦) =

{



General: 𝜇𝑖(𝑥, 𝑦)𝑔𝑖(𝐺𝑖),{

d𝐺= ∑𝑖 d𝐺𝑖= ∑𝑖 𝜇𝑖 d𝐹𝑖

𝐹= ∑𝑖 d𝐹𝑖

d𝐺≡𝜇𝑖𝑔𝑖(𝐺𝑖)𝐹

Homogeneous: 𝜇(𝑥, 𝑦) = 1/(𝑥𝑀 + 𝑦𝑁)

(63)

• 3-Dimension:

∇ × (𝜇𝑭) = 0

⟹ ∇𝜇 × 𝑭 + 𝜇∇ × 𝑭 = 0

⟹ ∇𝜇 ⋅ (∇𝜇 × 𝑭 + 𝜇∇ × 𝑭) = 0

⟹ ∇𝜇 ⋅ (∇ × 𝑭) = 0

(64)

♡
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Nature of Problem Integral Factor After Correction

Field Theorem 𝑭 = (𝑀, 𝑁), ∇ × 𝑭 ≠ 0 Scalar Field 𝑮 = (𝜇𝑀, 𝜇𝑁), ∇ × 𝑮 = 0, 𝑮 = ∇𝑔

Differential Form 1-form: 𝜔 = 𝑀 d𝑥 + 𝑁 d𝑦 is not closed 0-form new 1-form: 𝜂 = 𝜇𝜔 is closed and 𝜂 = d𝑔

Coordinate

Transformation
(𝑥, 𝑦) is twisted

A Transformation:

(𝑥, 𝑦) → (𝑋, 𝑌 ) → (0, 𝐺)
(0, 𝐺) is straight (Trivial!)

also for 𝜇 = 𝜇(𝑥 + 𝑦), 𝜇(𝑥𝑦), 𝜇(𝐹)

2.3.6 Implicit Form and Singular Solution

Forms

𝑦′ = 𝑓(𝑥, 𝑦) ⟹ 𝐹(𝑥, 𝑦, 𝑦′) = 0 (65)

On Space of (𝑥, 𝑦, 𝑦′) we have 2-D Surface 𝐹(𝑥, 𝑦, 𝑦′) = 0, then projection to planar 𝑥-𝑦 we have 

Solution Curve
♠︎

Solution

Step 1. For 𝐹(𝑥, 𝑦, 𝑝) = 0 we have parameter equation

{𝑥 = 𝑥(𝑠, 𝑡)𝑦 = 𝑦(𝑠, 𝑡)𝑝 = 𝑝(𝑠, 𝑡) (66)

Step 2. d𝑦 = 𝑝 d𝑥

⟹ d𝑦(𝑠, 𝑡) = 𝑦𝑠 d𝑠 + 𝑦𝑡 d𝑡 = 𝑝(𝑠, 𝑡)(𝑥𝑠 d𝑠 + 𝑥𝑡 d𝑡) (67)

Step 3. Eq.(67) to Eq.(66)
♡

Definition 2.3.2

For (∗) 𝐹(𝑥, 𝑦, 𝑦′) = 0, if 𝑦 = 𝜑(𝑥) is a solution on 𝐼 we have solution curve Γ = {(𝑥, 𝜑(𝑥)), 𝑥 ∈
𝐼} if ∀𝑝 ∈ Γ, ∃ Another solution (partialerent in Γ) is Tangent with 𝑝 in 𝑈(𝑝), we call it as Singular 

Solution
♣︎

• Necessary Condition:

{𝐹(𝑥, 𝑦, 𝑝) = 0
𝐹𝑝(𝑥, 𝑦, 𝑝) = 0, d𝑦 = 𝑝 d𝑥 (68)

• Sufficient Condition:

{



𝐹(𝑥, 𝑦, 𝑝) = 0

𝐹𝑝(𝑥, 𝑦, 𝑝) = 0, d𝑦 = 𝑝 d𝑥
𝐹𝑦(𝑥, 𝑦, 𝑝) ≠ 0
𝐹𝑝𝑝(𝑥, 𝑦, 𝑝) ≠ 0

(69)

Assume 𝐹, 𝐹𝑦, 𝐹𝑝 ∈ 𝐶(𝐼)
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2.3.7 Order-Reduction of Higher Order ODEs

Forms

For 𝑦″ = 𝑓(𝑥, 𝑦, 𝑦′)

if 𝑦″ = 𝑓(𝑥) ⟹just intergral

if 𝑦″ = 𝑓(𝑥, 𝑦′) ⟹let 𝑝 = 𝑦′, 𝑝′ = 𝑓(𝑥, 𝑝)

———— if 𝑦(𝑛) = 𝑓(𝑥, 𝑦(𝑛−1)) ⟹let 𝑝 = 𝑦(𝑛−1), 𝑝′ = 𝑓(𝑥, 𝑝)

if 𝑦″ = 𝑓(𝑦, 𝑦′) ⟹let 𝑝 = 𝑦′, d𝑝
d𝑥

= 𝑝d𝑝
d𝑦

= 𝑓(𝑦, 𝑝)
♠︎

Example 1.  For

𝑘 = |𝑦″|
(1 + 𝑦′2)3/2 = const (70)

let 𝑝 = 𝑦′, then

𝑘 = |𝑝′|
(1 + 𝑝2)3/2 ⟹ 𝑝

√1 + 𝑝2
= 𝑘(𝑥 + 𝐶1)

⟹ 𝑦′ = 𝑝 = 𝑘(𝑥 + 𝐶1)
√1 − 𝑘2(𝑥 + 𝐶1)

2
= 𝑥 + 𝐶1

√ 1
𝑘2 − (𝑥 + 𝐶1)

2

(71)

⟹ 𝑦(𝑥) = −√ 1
𝑘2 − (𝑥 + 𝐶1)

2 + 𝐶2 (72)

⟹ (𝑦 − 𝐶2)
2 + (𝑥 + 𝐶1)

2 = 1
𝑘2 (73)

Example 2. 

(d𝑦
d𝑥

)
2

− 𝑦d2𝑦
d𝑥2 = 0 (74)

let 𝑝 = d𝑦
d𝑥

, then

𝑝2 − 𝑦𝑝d𝑝
d𝑦

(75)

⟹ 𝑝 = 0 or 𝑝 − 𝑦d𝑝
d𝑦

= 0 (76)

⟹ 𝑦 = 𝐶2𝑒𝐶1𝑥 (77)
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3 LODEs and Higher Order LODEs

3.1 Formalization of LODEs

Definition 3.1.1

LODE Standard Form:

𝑦(𝑛) = 𝑓(𝑡) + 𝑝0(𝑡)𝑦 + 𝑝1(𝑡)𝑦′ + … + 𝑝𝑛−1(𝑡)𝑦(𝑛−1) (78)

let

{


𝑥1(𝑡) = 𝑦(𝑡)

𝑥2(𝑡) = 𝑦′(𝑡)
…
𝑥𝑛(𝑡) = 𝑦(𝑛−1)(𝑡)

(79)

then

(




𝑥1
𝑥2
⋮

𝑥𝑛)




′

=

(




0
0
⋮

𝑝1

1
0
⋮

𝑝2

0
1
⋱
𝑝3

…
…
⋱
…

0
0
⋮

𝑝𝑛)




(




𝑥1
𝑥2
⋮

𝑥𝑛)




+

(




0
0
…

𝑓(𝑡))




(80)

or

𝑿′ = 𝑨(𝑡)𝑿 + 𝑩(𝑡) (81)
♣︎

Forms(Homogeneous)

For 𝐴, 𝐵 ∈ 𝐶(𝐼)

𝑿′(𝑡) = 𝑨(𝑡)𝑿(𝑡) (82)

General Solution:

𝑿(𝑡) = (𝑿1(𝑡), 𝑿2(𝑡), …, 𝑿𝑛(𝑡))

(




𝑐1
𝑐2
⋮

𝑐𝑛)




≝ 𝚽(𝑡)𝑪 (83)

Lemma 3.1.2 (Wronsky Determinant)

(𝑿1(𝑡), 𝑿2(𝑡), …, 𝑿𝑛(𝑡)) are independent solutions ⇔ det(𝚽(𝑡)) = 𝑊(𝑡) ≠ 0, ∀𝑡 ∈ 𝐼
♡

Lemma 3.1.3 (Liouville Formula)

(𝑿1(𝑡), 𝑿2(𝑡), …, 𝑿𝑛(𝑡)) are solutions ⇒ 𝑊(𝑡) = 𝑊(𝑡0)𝑒
∫𝑡

𝑡0
Tr(𝑨(𝑠)) d𝑠

♡

♠︎
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Theorem 3.1.4 (Existence and Uniqueness)

For (*)

{𝑿′(𝑡) = 𝑨(𝑡)𝑿(𝑡) + 𝑩(𝑡)
𝑿(𝑡0) = 𝑿0

(84)

and 𝐴, 𝐵 ∈ 𝐶(𝐼), 𝑡0 ∈ 𝐼 = [𝑎, 𝑏] ⟹ ∃! Solution 𝑿(𝑡) in 𝐼

Existence Proof.

Proof. I. (*)⟺ 𝑿 = 𝑿0 + ∫𝑡
𝑡0

[𝐴𝑿 + 𝐵] d𝑠

II. Picard Iteration Series

𝑿0(𝑡) ≡ 𝑿0 (85)

𝑿𝑘+1(𝑡) = 𝑿0 + ∫
𝑡

𝑡0

[𝑨(𝑠)𝑿𝑘(𝑠) + 𝑩(𝑠)] d𝑠 (86)

III. Cauchy Series

let 𝑡 ∈ [𝑡0, 𝑏] = 𝐽

‖𝑿1(𝑡) − 𝑿0(𝑡)‖ = ‖∫
𝑡

𝑡0

[𝐴𝑿0 + 𝐵] d𝑠‖

≤ ∫
𝑡

𝑡0

[‖𝐴𝑿0‖ + ‖𝐵‖] d𝑠 ≤ ∫
𝑡

𝑡0

[‖𝐴‖‖𝑿0‖ + ‖𝐵‖] d𝑠

≤ {sup
𝑡∈𝐼

‖𝐴‖‖𝑿0‖ + sup
𝑡∈𝐼

‖𝐵‖}(𝑡 − 𝑡0)

(87)

let 𝐶 = sup‖𝐴‖, 𝐷 = 𝐶‖𝑿0‖ + sup‖𝐵‖

由归纳法

‖𝑿𝑘 − 𝑿𝑘−1‖ ≤ 𝐷
𝐶

[𝐶(𝑡 − 𝑡0)]
𝑘

𝑘!

‖𝑿𝑘+1 − 𝑿𝑘‖ = ‖∫
𝑡

𝑡0

𝐴(𝑿𝑘 − 𝑿𝑘−1) d𝑠‖ ≤ ‖∫
𝑡

𝑡0

𝐶‖𝑿𝑘 − 𝑿𝑘−1‖ d𝑠‖

≤ ∫
𝑡

𝑡0

𝐶 𝐷
𝐶

[𝐶(𝑡 − 𝑡0)]
𝑘

𝑘!
d𝑠 = 𝐷𝐶𝑘(𝑡 − 𝑡0)

𝑘+1

(𝑘 + 1)!

(88)

‖𝑿𝑚 − 𝑿𝑘‖ ≤ ∑
𝑚

𝑗=𝑘+1
‖𝑿𝑘 − 𝑿𝑘−1‖ ≤ 𝐷

𝐶
∑
𝑚

𝑘+1

[𝐶(𝑡 − 𝑡0)]
𝑘

𝑘!

≤ 𝐷
𝐶

∑
𝑚

𝑘+1

[𝐶(𝑏 − 𝑎)]𝑘

𝑘!
→ 0 which is Taylor extension of 𝑒𝑏−𝑎 at (𝑏 − 𝑎) → 0

⟹ ∃𝜀 > 0, ∀𝑚, 𝑘 > 0, ∀𝑡 ∈ 𝐽  s.t. ‖𝑿𝑚 − 𝑿𝑘‖ < 𝜀  一致收敛

(89)

⁠ □
♡

17



Jingyuan XU ODE

thus

lim
𝑛→∞

𝑿𝑛(𝑡) = 𝑿(𝑡) = 𝑿0 + lim
𝑛→∞

∫
𝑡

𝑡0

[𝑨(𝑠)𝑿𝑛−1(𝑠) + 𝑩(𝑠)] d𝑠

= 𝑿0 + ∫
𝑡

𝑡0

lim
𝑛→∞

[𝑨(𝑠)𝑿𝑛−1(𝑠) + 𝑩(𝑠)] d𝑠

= 𝑿0 + ∫
𝑡

𝑡0

[𝑨(𝑠)𝑿(𝑠) + 𝑩(𝑠)] d𝑠

(90)

Uniqueness Proof.

Proof. If ∃𝑿, 𝒀 , then

𝑿(𝑡) − 𝒀 (𝑡) = ∫
𝑡

𝑡0

𝑨(𝑠)(𝑿(𝑠) − 𝒀 (𝑠)) d𝑠

⟹ ‖𝑿(𝑡) − 𝒀 (𝑡)‖ ≤ ∫
𝑡

𝑡0

‖𝑨(𝑠)‖‖𝑿(𝑠) − 𝒀 (𝑠)‖ d𝑠

⟹ ‖𝑿 − 𝒀 ‖(𝑡) ≤ 0 ⋅ exp(∫
𝑡

𝑡0

‖𝑨(𝑠)‖‖𝑿(𝑠) − 𝒀 (𝑠)‖ d𝑠) = 0 (Gronwell)

⟹ 𝑿 = 𝒀

(91)

⁠ □
♡

Forms(Inhomogeneous)

For 𝐴, 𝐵 ∈ 𝐶(𝐼)

{𝑿′(𝑡) = 𝑨(𝑡)𝑿(𝑡) + 𝑩(𝑡)
𝑿(𝑡0) = 𝑿0

(92)

Special Solution:

𝑿∗(𝑡) = 𝚽(𝑡)𝑪(𝑡) = 𝚽(𝑡) ∫
𝑡

𝑡0

𝚽−1(𝑠)𝑩(𝑠) d𝑠 (93)

General Solution:

𝑿(𝑡) = 𝑿∗(𝑡) + 𝚽(𝑡)𝑪

= 𝚽(𝑡)(∫
𝑡

𝑡0

𝚽−1(𝑠)𝑩(𝑠) d𝑠 + 𝑪)

= 𝚽(𝑡) ∫
𝑡

𝑡0

𝚽−1(𝑠)𝑩(𝑠) d𝑠 + 𝚽(𝑡)𝚽−1(𝑡0)𝑿0

(94)

♠︎
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3.2 Solution of LODEs

Theorem 3.2.1 (Homogeneous)

For 𝐴, 𝐵 ∈ 𝐶(𝐼)

{𝑿′(𝑡) = 𝑨(𝑡)𝑿(𝑡)
𝑿(𝑡0) = 𝑿0

(95)

if Exchangeability satisfies

𝑨(𝑡) ⋅ ∫
𝑡

𝑡0

𝑨(𝑠) d𝑠 = ∫
𝑡

𝑡0

𝑨(𝑠) d𝑠 ⋅ 𝑨(𝑡) (96)

then

𝑿(𝑡) = 𝑒𝑫(𝑡)𝑿0 = 𝑒∫𝑡
𝑡0

𝑨(𝑠) d𝑠𝑿0 = ∑
∞

𝑚=0

𝑫𝑚(𝑡)
𝑚!

𝑿0 (97)

if 𝑨 is constant matrix

• 𝑨 has n independent eigenvectors 𝒗1, 𝒗2, …, 𝒗𝑛 with eigenvalues 𝜆1, 𝜆2, …, 𝜆𝑛

𝑷 −1𝑨𝑷 = diag(𝜆1, 𝜆2, …, 𝜆𝑛) = 𝚲 ⟹ 𝑨𝑷 = 𝑷𝚲, 𝑷 = (𝒗1, 𝒗2, …, 𝒗𝑛) (98)

⟹ 𝑿𝑖(𝑡) = 𝑒𝑨(𝑡−𝑡0)𝒗𝑖 = 𝑒𝜆𝑖(𝑡−𝑡0)𝒗𝑖, 𝒗𝑖 = 𝑿𝑖(𝑡0) (99)

Assume 𝑡0 = 0 ⟹ 𝑿(𝑡) = ∑
𝑛

𝑖=1
𝑐𝑖𝑒𝜆𝑖𝑡𝒗𝑖 = 𝑷𝑒𝚲𝑡𝑪 = 𝑒𝑨𝑡 𝑷𝑪⏟

𝑿0

= 𝚽(𝑡)𝑪

𝚽(𝑡) = 𝑒𝑨𝑡𝑷 , 𝚽(0) = 𝑷 , 𝑒𝑨𝑡 = 𝚽(𝑡)𝚽−1(0)

(100)

Note

if 𝜆𝑟+1, 𝜆𝑟+2, …, 𝜆𝑛 are complex,we can have real value solutions:

𝚽(𝑡) = (𝑒𝜆1𝑡𝒗1, 𝑒𝜆2𝑡𝒗2, …, 𝑒𝜆𝑟𝑡𝒗𝑟, Re(𝑒𝜆𝑟+1𝑡𝒗𝑟+1), Im(𝑒𝜆𝑟+1𝑡𝒗𝑟+1), …, Im(𝑒𝜆𝑟+𝑠𝑡𝒗𝑟+𝑠))

𝑠 = (𝑛 − 𝑟)/2
(101)

• 𝑨 have k(k < n) independent eigenvectors, each multiplicity number is 𝑛𝑗, 1 ≤ 𝑗 ≤ 𝑘

(𝑨 − 𝜆𝑗𝑬)𝛽𝒗𝑙
𝑗 = 0 (𝛽 ≥ 𝑛𝑗), 𝑨 = 𝑷𝑱𝑷 −1 (102)

𝑿𝑙
𝑗(𝑡) = 𝑒𝑨𝑡𝒗𝑙

𝑗 = 𝑒𝜆𝑗𝑡𝑒(𝑨−𝜆𝑗𝑬)𝑡𝒗𝑙
𝑗

= 𝑒𝜆𝑗𝑡[𝑬 + 𝑡(𝑨 − 𝜆𝑗𝑬) + 𝑡2

2!
(𝑨 − 𝜆𝑗𝑬)2 + … + 𝑡𝑛𝑗−1

(𝑛𝑗 − 1)!
(𝑨 − 𝜆𝑗𝑬)𝑛𝑗−1]𝒗𝑙

𝑗 = 𝑒𝑱𝑗𝑡𝒗𝑙
𝑗

(103)

𝚽(𝑡) = (𝑿1
1 , 𝑿2

1 , …, 𝑿𝑛1
1 , …, 𝑿𝑛𝑘

𝑘 )(𝑡) (104)

♡
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4 General Theory of ODE

4.1 Existence and Uniqueness of Initial Value Problems

Definition 4.1.1 (Equicontinuous)

For {𝑓𝑛(𝑥)} on 𝐼 = [𝑎, 𝑏]

if ∀𝜀 > 0, ∀𝑛 = 1, 2, …,∃𝛿 = 𝛿(𝜀) > 0, s.t. ∀|𝑥𝑖 − 𝑥𝑗| < 𝛿 ⇒ |𝑓𝑛(𝑥𝑖) − 𝑓𝑛(𝑥𝑗)| < 𝜀

then {𝑓𝑛(𝑥)} is Equicontinuous on 𝐼 .
♣︎

Definition 4.1.2 (Uniformly Bounded)

For {𝑓𝑛(𝑥)} on 𝐼 = [𝑎, 𝑏]

if ∃𝐾, s.t. ∀𝑛 = 1, 2, …, ∀𝑥 ∈ 𝐼 , |𝑓𝑛(𝑥)| ≤ 𝐾

then {𝑓𝑛(𝑥)} is Uniformly Bounded on 𝐼 .
♣︎

Lemma 4.1.3

𝐴 ⊂ 𝐼 is Dense Point Set of 𝐼 , {𝑓𝑛{𝑥}} is Equicontinuous over 𝐼 ,

if ∀𝑥𝑖 ∈ 𝐴, {𝑓𝑛{𝑥𝑖}} is Cauchy Sequence, then {𝑓𝑛{𝑥}} ⇉ 𝑓(𝑥) is Continuous on 𝐼 .
♡

Theorem 4.1.4 (Arzela-Ascoli Theorem)

For {𝑓𝑛(𝑥)} on 𝐼 = [𝑎, 𝑏]

if {𝑓𝑛(𝑥)} is Equicontinuous and Uniformly Bounded on I,

then at least ∃ one {𝑓𝑛𝑘
(𝑥)}, s.t. 𝑓𝑛𝑘

(𝑥) ⇉ 𝑓(𝑥) is Continueous on 𝐼
♡

4.1.1 Peano Theorem of Existence

Theorem 4.1.5 (Peano Theorem)

For

{

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦)

𝑦(𝑥0) = 𝑦0

(105)

if 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐷), 𝐷 = {(𝑥, 𝑦)| |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏}

then at least ∃ one 𝑦 = 𝜑(𝑥) on [𝑥0 − ℎ, 𝑥0 + ℎ],

ℎ = min(𝑎, 𝑏
𝑀

),  𝑀 = sup
{(𝑥,𝑦)∈𝐷}

|𝑓(𝑥, 𝑦)| (106)

♡

• 找到 Euler折线⇒证明近似解⇒证明满足 Arzela-Ascoli定理⇒证明存在解
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4.1.2 Picard Theorem of Uniqueness and Existence

Definition 4.1.6 (Lipschitz Condition)

For 𝑓(𝑥, 𝑦) on 𝐺

if for ∀ Bounded Close Set 𝐾 ⊂ 𝐺, ∃𝐿𝐾 > 0, s.t.

∀(𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝐺,  |𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)| ≤ 𝐿𝐾 |𝑦1 − 𝑦2| (107)

then 𝑓(𝑥, 𝑦) satisfies Lipschitz Condition on 𝐺.

if 𝐿𝐾 is independent of 𝐾, then 𝑓(𝑥, 𝑦) satisfies Global Lipschitz Condition on 𝐺.
♣︎

Theorem 4.1.7 (Picard Theorem)

For

{

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦)

𝑦(𝑥0) = 𝑦0

(108)

if 𝑓(𝑥, 𝑦), 𝜕𝑓
𝜕𝑦

∈ 𝐶(𝐷), 𝐷 = {(𝑥, 𝑦)| |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏}

then ∃! one 𝑦 = 𝜑(𝑥) on [𝑥0 − ℎ, 𝑥0 + ℎ],

ℎ = min(𝑎, 𝑏
𝑀

),  𝑀 = sup
{(𝑥,𝑦)∈𝐷}

|𝑓(𝑥, 𝑦)| (109)

♡

• 存在性：找到 Picard迭代序列⇒证明连续可微+一致有界⇒证明一致收敛⇒证明存在连续解

• 唯一性：假设存在两个解⇒构造差值函数⇒利用 Gronwall不等式证明差值函数恒为 0

Lemma 4.1.8 (Gronwall Inequality)

if 𝑢(𝑥) is Non-negative Continuous Function on [𝑥0, 𝑥1], and

𝑢(𝑥) ≤ 𝐶 + ∫
𝑥

𝑥0

(𝑎(𝑠)𝑢(𝑠) + 𝐾) d𝑠 (110)

where 𝐶, 𝐾 ≥ 0, 𝑎(𝑥) is Non-negative Continuous Function on [𝑥0, 𝑥1],

then

𝑢(𝑥) ≤ (𝐶 + 𝐾(𝑥 − 𝑥0))𝑒
∫𝑥

𝑥0
𝑎(𝑠) d𝑠 (111)

when 𝐶 = 0, then 𝑢(𝑥) ≡ 0 on [𝑥0, 𝑥1].
♡
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Definition 4.1.9 (Osgood Condition)

For 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺) and satisfies

|𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)| ≤ 𝐹(|𝑦1 − 𝑦2|) (112)

where 𝐹(𝑟) > 0 ∈ 𝐶(0, +∞), and

∫
𝑟1

0

d𝑟
𝐹(𝑟)

= +∞ (113)

then 𝑓(𝑥, 𝑦) satisfies Osgood Condition on 𝐺.
♣︎

Theorem 4.1.10 (Osgood Theorem)

For

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) (114)

if 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺), and 𝑓(𝑥, 𝑦) satisfies Osgood Condition on 𝐺 then at most only one solution 𝑦 =
𝜑(𝑥) exists on 𝐺

♡

4.1.3 Cauchy Theorem of Existence and Uniqueness

Theorem 4.1.11 (Cauchy Theorem)

For

{

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦)

𝑦(𝑥0) = 𝑦0

(115)

if 𝑓(𝑥, 𝑦) is real analytic function over 𝐷 = {(𝑥, 𝑦)| |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏}

then ∃! one real analytic solution 𝑦 = 𝜑(𝑥) on 𝑈(𝑥0)
♡

证明：优级数法(Majorant series method)

Proof.  let (𝑥0, 𝑦0) = (0, 0), Then on 𝐷,

𝑓(𝑥, 𝑦) = ∑
∞

𝑖,𝑗=0
𝑎𝑖𝑗𝑥𝑖𝑦𝑗 (116)

if 𝑦 = 𝜙(𝑥) is real analytic solution, then

𝜙(𝑥) = ∑
∞

𝑛=1
𝑏𝑛𝑥𝑛 (117)

and 𝑏𝑖 = 𝑝𝑖(𝑎𝑚𝑛), where 𝑝𝑖 is a polynomial of 𝑎𝑚𝑛, 0 ≤ 𝑚, 𝑛 ≤ 𝑖 − 1.

Consider
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𝐹(𝑥, 𝑦) = 𝑀

(1 − 𝑥
𝑟
)(1 − 𝑦

𝑟
)

(118)

where 𝑀  is const, 𝑟 = min{𝑎, 𝑏}, 𝐹  is majorant funtion of 𝑓 , i.e.

𝐹(𝑥, 𝑦) = ∑
∞

𝑖,𝑗=0
𝐴𝑖𝑗𝑥𝑖𝑦𝑗 (119)

where |𝑎𝑖𝑗| ≤ 𝐴𝑖𝑗, we could have serires

∑
∞

𝑖=0
𝐴𝑖𝑥𝑖 (120)

where 𝐴𝑖 = 𝑝𝑖(𝐴𝑚𝑛), it’s true that this series is majorant series of series defined by 𝜙(𝑥)

For

d𝑦
d𝑥

= 𝐹(𝑥, 𝑦) (121)

we have

𝑦 − 𝑦2

2𝑟
= −𝑟𝑀 ln(1 − 𝑥

𝑟
) (122)

𝑦 = Φ(𝑥) = 𝑟 − 𝑟√1 + 2𝑀 ln(1 − 𝑥
𝑟
) (123)

and Φ(𝑥) is analytic where |𝑥| < 𝜌 = 𝑟(1 − 𝑒−1/2𝑀) ⟹ ∑∞
𝑖=0 𝑏𝑖𝑥𝑖 ⇉ 𝜙(𝑥)

⁠ □

4.2 Extension of Solution

Lemma 4.2.1

For 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺) and

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) (124)

• if 𝜑(𝑥) is one solution over [𝑥0, 𝑏) and for {(𝑥, 𝜑(𝑥)) : 𝑥 ∈ [𝑥0, 𝑏)} ⊂ 𝐴 ⊂ 𝐺, where 𝐴 is compact set

then 𝑦 = 𝜑(𝑥) could be extended to [𝑥0, 𝑏]
• if 𝜑(𝑥) ∈ [𝑥0, 𝑏], 𝜓(𝑥) ∈ [𝑏, 𝑐] are solution, and 𝜑(𝑏) = 𝜓(𝑏), then

𝑦(𝑥) ≔ {𝜑(𝑥), 𝑥0 ≤ 𝑥 ≤ 𝑏
𝜓(𝑥), 𝑏 < 𝑥 ≤ 𝑐 (125)

is a solution over [𝑥0, 𝑐]
♡

证明（1）：紧集⟹有界⟹一致连续⟹边界点极限值存在，且含于紧集⟹证明积分方程对闭区间都成立

证明（2）：𝑦(𝑥)在𝑏处左右连续且左右可微且左右导数连续，证毕
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Theorem 4.2.2

For 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺), (𝑥0, 𝑦0) ∈ 𝐺 and Γ is integral curve of

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) (126)

through (𝑥0, 𝑦0), then Γ could be extended to 𝜕𝐺
♡

Definition 4.2.3 (Saturated Solution)

𝜑(𝑥) is one solution of the problem over 𝐼 , 𝜓(𝑥) is another solution over (𝑎1, 𝑏1) ⊃ 𝐼
• if ∀𝑥 ∈ 𝐼 , 𝜑(𝑥) = 𝜓(𝑥) then 𝜑(𝑥) is extendable and 𝜓(𝑥) is a extension of 𝜑(𝑥) over (𝑎1, 𝑏1)
• if not exists 𝜓(𝑥), then 𝜑(𝑥) is saturated

♣︎

Theorem 4.2.4

if 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺), 𝐺 ⊂ ℝ2 and satisfies Lipschitz condition for 𝑦, then for ∀(𝑥, 𝑦) ∈ 𝐺, ∃! saturated 

solution through it.
♡

证明：反证法⟹假设在某个点上两饱和解分开⟹由条件得该点邻域连续且满足 Lipschitz条件⟹由

Picard定理得该点邻域解唯一⟹矛盾

4.3 Global Existence of Solutions

Theorem 4.3.1

For 𝑓(𝑥, 𝑦) ∈ 𝐶(𝑅) where 𝑅 = {(𝑥, 𝑦)|𝑎 < 𝑥 < 𝑏, |𝑦| < +∞}, and satisfies Global Lipschitz Con

dition for 𝑦, then for

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) (127)

then every saturated solution is confined to (𝑎, 𝑏)
♡

Theorem 4.3.2 (1st Comparison Theorem)

For 𝑓(𝑥, 𝑦), 𝐹 (𝑥, 𝑦) ∈ 𝐶(𝐺), 𝑦 = 𝜙(𝑥) and 𝑦 = Φ(𝑥) are solutions of

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) (128)

d𝑦
d𝑥

= 𝐹(𝑥, 𝑦) (129)

on [𝑥0, 𝑏), 𝑦(𝑥0) = 𝑦0 and if ∀(𝑥, 𝑦) ∈ 𝐺

𝑓(𝑥, 𝑦) < 𝐹(𝑥, 𝑦) (130)

then for 𝑥 ∈ (𝑥0, 𝑏), 𝜙(𝑥) < Φ(𝑥)
♡
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Definition 4.3.3

on [𝑥0, 𝑏), if

d𝑣
d𝑥

< 𝑓(𝑥, 𝑦) = d𝑦
d𝑥

< d𝑤
d𝑥

,

𝑣(𝑥0) ≤ 𝑦0 = 𝑦(𝑥0) ≤ 𝑤(𝑥0)
(131)

then 𝑣(𝑥), 𝑦(𝑥), 𝑤(𝑥) are called Lower Solution(Right), Solution(Right), Upper Solu

tion(Right) respectively.
♣︎

Theorem 4.3.4

for 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐼), if 𝑣(𝑥), 𝑤(𝑥) are Lower Solution(Right), Upper Solution(Right) on [𝑥0, 𝑏) of

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (132)

then on (𝑥0, 𝑏)

𝑣(𝑥) < 𝑦(𝑥) < 𝑤(𝑥) (133)
♡

Theorem 4.3.5

if 𝑓(𝑥, 𝑦) ∈ 𝐶(𝑅) where 𝑅 = {(𝑥, 𝑦)|𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝑎, |𝑦 − 𝑦0| ≤ 𝑏}, then for

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦) , 𝑦(𝑥0) = 𝑦0 (134)

then there exists lowest solution and uppest solution 𝑦 = 𝑉 (𝑥) and 𝑦 = 𝑊(𝑥) on [𝑥0, 𝑥0 +
ℎ], where

ℎ < 𝛼 = min(𝑎, 𝑏
𝑀

), 𝑀 = sup
(𝑥,𝑦)∈𝑅

|𝑓(𝑥, 𝑦)| (135)

i.e. for any solution 𝑦 = 𝜑(𝑥) on [𝑥0, 𝑥0 + ℎ],

𝑉 (𝑥) ≤ 𝜑(𝑥) ≤ 𝑊(𝑥) (136)
♡

Theorem 4.3.6 (2nd Comparison Theorem)

if 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺), where 𝐺 = {(𝑥, 𝑦)| 𝑥0 ≤ 𝑥 < 𝑏, |𝑦| < ∞}, for (𝑥0, 𝑦0) ∈ 𝐺 and

d𝑦
d𝑥

= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (137)

the maximum range is [𝑥0, 𝛽1)
• if upper solution Φ(𝑥) and lower solution 𝜑(𝑥) have public range [𝑥0, 𝛽) then 𝛽1 ≥ 𝛽
• if exists upper(or lower) solution Φ(𝑥) (𝜑(𝑥)), and its maximum range is [𝑥0, 𝛽), where 𝑥 → 𝛽−, Φ(𝑥) →

−∞ (or 𝜑(𝑥) → +∞) , then 𝛽1 ≤ 𝛽
♡
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4.4 Continuous Dependence of Solutions

Theorem 4.4.1 (Continuous Dependence of Evolution Function)

𝐹(𝑥, 𝑦), 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺) and satisfies

|𝐹 (𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| ≤ 𝜀 (138)

𝑓(𝑥, 𝑦) satisfies Lipschitz condition for 𝑦 (Lip const= 𝐿) For

{

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦), d𝜑

d𝑥
= 𝐹(𝑥, 𝑦)

𝑦(𝑥0) = 𝜑(𝑥0) = 𝑦0

(139)

on |𝑥 − 𝑥0| ≤ 𝛼, we have

|𝑦(𝑥) − 𝜑(𝑥)| ≤ 𝜀
𝐿

(𝑒𝐿𝛼 − 1) (140)
♡

Theorem 4.4.2 (Continuous Dependence of Initial Value)

𝐺 ⊂ ℝ is connected, 𝑓(𝑥, 𝑦) ∈ 𝐶(𝐺) and satisfies Local Lipschitz Condition for 𝑦 if

{

d𝑦

d𝑥
= 𝑓(𝑥, 𝑦)

𝑦(𝑥0) = 𝑥0

(141)

has unique solution 𝑦 = 𝜑(𝑥; 𝑥0, 𝑦0) on 𝐼 = [𝑎, 𝑏] ⊂ 𝐺, then over 𝐼

lim
(𝜉,𝜂)→(𝑥0,𝑦0)

𝜑(𝑥; 𝜉, 𝜂) ⇉ 𝜑(𝑥; 𝑥0, 𝑦0) (142)
♡

Theorem 4.4.3 (Continuous Dependence of Initial Value + Parameter)

𝑓(𝑥, 𝑦, 𝜆) ∈ 𝐶(𝐺𝜆) and satisfies Local Lipschitz Condition for (𝑦, 𝜆) if

{


d𝑦

d𝑥
= 𝑓(𝑥, 𝑦, 𝜆)

𝑦(𝑥0) = 𝑥0
𝜆 = 𝜆0

(143)

has solution 𝑦 = 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆0) on 𝐼 = [𝑎, 𝑏] ⊂ 𝐺𝜆, then over 𝐼

lim
(𝜉,𝜂,𝜆)→(𝑥0,𝑦0,𝜆0)

𝜑(𝑥; 𝜉, 𝜂, 𝜆) ⇉ 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆0) (144)
♡

Theorem 4.4.4 (Differentiable Properties of Solution + Parameter)

𝑓(𝑥, 𝑦, 𝜆) ∈ 𝐶(𝐺𝜆) and satisfies Local Lipschitz Condition for (𝑦, 𝜆)

𝑓𝑦(𝑥, 𝑦, 𝜆), 𝑓𝜆(𝑥, 𝑦, 𝜆) ∈ 𝐶(𝐺𝜆) then 𝑦 = 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆)is Continueous and Differentiabe
♡
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𝑢 = 𝜕𝜑
𝜕𝑥0

, 𝑣 = 𝜕𝜑
𝜕𝑦0

, 𝑤 = 𝜕𝜑
𝜕𝜆

(145)

{

d𝑢

d𝑥
= 𝑓𝑦(𝑥, 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆))𝑢

𝑢(𝑥0) = −𝑓(𝑥0, 𝑦0, 𝜆)
(146)

{

d𝑣

d𝑥
= 𝑓𝑦(𝑥, 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆))𝑣

𝑣(𝑥0) = 1
(147)

{

d𝑤

d𝑥
= 𝑓𝑦(𝑥, 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆))𝑢 + 𝑓𝜆(𝑥, 𝜑(𝑥; 𝑥0, 𝑦0, 𝜆))

𝑤(𝑥0) = 0
(148)

4.5 ODEs and Higher Order ODEs

Uniqueness and Existence

Extension

Comparison

Continueous Dependence

4.6 First Integral

Definition 4.6.1

For non-trivial 𝜓(𝑡, 𝑿) ∈ 𝐶1(ℝ𝑛+1) and if solutions of

d𝑿
d𝑡

= 𝑭(𝑡, 𝑿) (149)

could be expressed in

𝜓(𝑡, 𝑿) = 𝐶 (150)

then it’s a First Integral

if 𝜓𝑗(𝑡, 𝑿) = 𝐶𝑗(1 ≤ 𝑗 ≤ 𝑛) satisfies

𝜕(𝜓1, …, 𝜓𝑛)
𝜕(𝑥1, …, 𝑥𝑛)

≠ 0 (151)

then they are Independent
♣︎

the number of First Integral won’t be larger than 𝑛 at most
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5 Stability Theory

5.1 Lyapunov Stability

Definition 5.1.1 ((Lyapunov) Stable)

For

{

d𝒙

d𝑡
= 𝒇(𝒕, 𝒙)

𝑡 ∈ (𝛽, +∞)
, 𝛽 ∈ ℝ (152)

𝒇(𝑡, 𝒙) satisfies Local Lipschitz Condition for 𝒙 and has a solution 𝒙 = 𝝋(𝑡)

For ∀𝜀 > 0, ∀𝑡0 > 𝛽, ∃𝛿(𝑡0, 𝜀) > 0 s.t. ‖𝒙0 − 𝝋(𝒕𝟎)‖ < 𝛿, and if ∀𝑡 > 𝑡0,

‖𝒙(𝑡; 𝑡0, 𝒙0) − 𝝋(𝑡)‖ < 𝜀 (153)

then 𝒙 = 𝝋(𝑡) is Lyapunov Stable if 𝛿 = 𝛿(𝜀) then Global Stable
♣︎

Definition 5.1.2 ((Lyapunov) Attractive)

For ∀𝑡0 > 𝛽, ∃𝛿1(𝑡0) s.t. ‖𝒙0 − 𝝋(𝒕𝟎)‖ < 𝛿1, and if ∀𝑡 > 𝑡0,

lim
𝑡→+∞

‖𝒙(𝑡; 𝑡0, 𝒙0) − 𝝋(𝑡)‖ = 0 (154)

then 𝒙 = 𝝋(𝑡) is Lyapunov Attractive if 𝛿1(𝑡0) ≡ 𝛿1 then Global Attractive
♣︎

Note

Asymptotically Stable = Stable + Attractive

Global Asymptotically Stable = Global Stable + Global Attractive

5.2 Stability Analysis

Definition 5.2.1

{



d𝒙

d𝑡
= 𝑨(𝑡)𝒙 + 𝑹(𝑡, 𝒙)

𝑨(𝑡) = [𝜕𝒇(𝑡, 𝒙)
𝜕𝒙

]
𝑥=0

= ∇𝒙𝒇|
𝒙=0

𝑹(𝑡, 𝒙) = 𝑂(𝒙)

(155)

if we have

lim
‖𝒙‖→0

‖𝑹(𝑡, 𝒙)‖
‖𝒙‖

= 0 (156)

♣︎
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then

d𝒙
d𝑡

= 𝑨(𝑡)𝒙 (157)

is a Linear Approximation Equation
♣︎

Theorem 5.2.2

For

d𝒙
d𝑡

= 𝑨(𝑡)𝒙 (158)

we have 𝚽(𝑡) satisfies 𝒙(𝑡) = 𝚽(𝑡)𝑪
• Zero Solution is Stable ⟺ ∃𝐾 = 𝐾(𝑡0) > 0 s.t.

‖𝚽(𝑡)‖ ≤ 𝐾, 𝑡 ≥ 𝑡0 (159)

• Zero Solution is Stable ⟺ ∃𝐾 = 𝐾(𝛽) > 0 s.t.

‖𝚽(𝑡)𝚽−1(𝑠)‖ ≤ 𝐾, 𝑡 > 𝑠 > 𝛽 (160)

• Zero Solution is Asymptotically Stable ⟺

lim
𝑡→+∞

‖𝚽(𝑡)‖ = 0 (161)

• Zero Solution is Global Asymptotically Stable ⟺ ∃𝑀 = 𝑀(𝛽) > 0, 𝛼 = 𝛼(𝛽) > 0 s.t.

‖𝚽(𝑡)𝚽−1(𝑠)‖ ≤ 𝑀𝑒−𝛼(𝑡−𝑠), 𝑡 > 𝑠 > 𝛽 (162)
♡

Theorem 5.2.3

For

d𝒙
d𝑡

= 𝑨𝒙 (163)

𝜆𝑗 are Eigenvalues of 𝑨
• Zero Solution is (Global) Asymptotically Stable ⟺ ∀𝑗 = 1, …, 𝑛

Re(𝜆𝑗) < 0 (164)

• Zero Solution is (Global) Stable ⟺ ∀𝑗, 𝑘 = 1, …, 𝑛

Re(𝜆𝑗) < 0, Re(𝜆𝑘) = 0, dim(𝑱𝑘) = 1 (165)

• Zero Solution is Unstable ⟺ ∃𝑗, 𝑘 = 1, …, 𝑛

Re(𝜆𝑗) > 0 or Re(𝜆𝑘) = 0, dim(𝑱𝑘) ≥ 2 (166)
♡
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Theorem 5.2.4

For

d𝒙
d𝑡

= 𝑨(𝑡)𝒙 + 𝑹(𝑡, 𝒙) (167)

if Zero solution of

d𝒙
d𝑡

= 𝑨(𝑡)𝒙 (168)

is Global Stable and ∃𝛿 > 0, and 𝑏(𝑡) satisfies

∫
+∞

𝛽
𝑏(𝑡) d𝑡 < +∞ (169)

then s.t.

‖𝑹(𝑡, 𝒙)‖ ≤ 𝑏(𝑡)‖𝒙‖, 𝑡 > 𝛽, ‖𝒙‖ ≤ 𝛿 (170)

then Zero solution of (167) is Global Stable
♡

Theorem 5.2.5

if Zero solution of

d𝒙
d𝑡

= 𝑨(𝑡)𝒙 (171)

is Global Asymptotically Stable and ∃𝛿 > 0, and 𝑏(𝑡) satisfies

∫
𝑡

𝑡0

𝑏(𝑠) d𝑠 < 𝛾(𝛽)(𝑡 − 𝑡0) + 𝜏(𝛽), 𝑡 > 𝑡0 > 𝛽 (172)

then s.t.

‖𝑹(𝑡, 𝒙)‖ ≤ 𝑏(𝑡)‖𝒙‖, 𝑡 > 𝛽, ‖𝒙‖ ≤ 𝛿 (173)

then if ∃𝑟 > 0 when 𝛾 < 𝑟, Zero solution of (167) is Global Stable
♡

类似 Lipshitz条件

Theorem 5.2.6

For

d𝒙
d𝑡

= 𝑨𝒙 + 𝑹(𝑡, 𝒙) (174)

if 𝑹(𝑡, 𝒙) satisfies

lim
‖𝒙‖→0

‖𝑹(𝑡, 𝒙)‖
‖𝒙‖

= 0, ∀𝑡 > 𝛽 (175)

♡
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• Zero solution of (174) is Global Asymptotically Stable ⟺ ∀ Re(𝜆𝐴) < 0
• Zero solution of (174) is Unstable ⟺ ∃ Re(𝜆𝐴) > 0

♡

Theorem 5.2.7 (Routh-Hurwitz Laws)

if

𝑃(𝜆) = 𝑎0𝜆𝑛 + 𝑎1𝜆𝑛−1 + … + 𝑎𝑛−1𝜆 + 𝑎𝑛 (176)

Then for

Δ𝑛 =

(




𝑎1

𝑎3
𝑎5
⋮
0

𝑎0
𝑎2
𝑎4
⋮
0

0
𝑎1
𝑎3
⋮
0

0
𝑎0
𝑎2
⋮
0

…
…
…
…
…

0
0
0
⋮

𝑎𝑛)






(177)

All Real Part of Roots of 𝑃𝑛(𝜆) are negative ⟺ ∀ Leading Principle Minor(顺序主子式) of Δ𝑛 

are positive
♡

5.3 Autonomous System and Lyapunov 2nd Method

Definition 5.3.1 (Lyapunov Function)

𝑉 (𝒙) ∈ 𝐶1(𝐼), 𝐼 = {‖𝒙‖ < ℎ}

Based on different some condition below

• I. Postive-Definite: 𝑉 (0) = 0;𝑉 (𝒙) > 0, 𝒙 ≠ 0

• II. Negative-Definite Derivate: 
𝐷𝑉
𝐷𝑡

= ∇𝒙𝑉 ⋅ 𝒇 < 0, 𝒙 ≠ 0

• III. Semi-Negative-Definite Derivate: 
𝐷𝑉
𝐷𝑡

= ∇𝒙𝑉 ⋅ 𝒇 ≤ 0

• IV. Positive-Definite Derivate: 
𝐷𝑉
𝐷𝑡

= ∇𝒙𝑉 ⋅ 𝒇 > 0, 𝒙 ≠ 0
♣︎

Theorem 5.3.2

For Autonomous System

d𝒙
d𝑡

= 𝒇(𝒙) (178)

• I+II ⟹ Zero solution of (178) is Asymptotically Stable

• I+III ⟹ Zero solution of (178) is Stable

• I+IV ⟹ Zero solution of (178) is Unstable
♡
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