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Principle of Refrigeration

一、制冷热力学基础

1. 制冷的方法
制冷分为非循环制冷和循环制冷

A. 机械压缩制冷

1.1 相变制冷：
物质：质密态⟶质稀态相变吸收潜热

1.2 膨胀制冷
• 绝热放气
• 有外功输出的膨胀
• 节流膨胀（节流过程）

前两者均为等熵节流效应

𝛼𝑠 = (𝜕𝑇
𝜕𝑝

)
𝑠

= 𝑇
𝑐𝑝

( 𝜕𝑣
𝜕𝑇

)
𝑝

= 𝜅 − 1
𝜅

𝑇
𝑝

 (Ideal Gas) (1)

实际过程（多变过程）的积分节流效应：

Δ𝑇 = 𝑇1 − 𝑇2 = 𝑇1
[
[[1 − (𝑝2

𝑝1
)

𝑚−1
𝑚

]
]] (2)

后者则为等焓节流效应

𝛼ℎ = (𝜕𝑇
𝜕𝑝

)
ℎ

=
𝑇( 𝜕𝑣

𝜕𝑇
)

𝑝
− 𝑣

𝑐𝑝
 
{{
{
{{< 0制热区

> 0制冷区
= 0转化曲线（确定最高、最低转化温度）

(3)

饱和区域内：

𝛼𝑠 = 𝛼ℎ = d𝑇
d𝑝

= 𝑇
𝑟

(𝑣″ − 𝑣′) (4)

1.3 气体涡流制冷
𝑞𝑚ℎ = 𝑞𝑚,𝑐ℎ𝑐 + 𝑞𝑚,ℎℎℎ

ℎ = 𝜇ℎ𝑐 + (1 − 𝜇)ℎℎ,  𝜇 =
𝑞𝑚,𝑐

𝑞𝑚

(5)

能量分离假说：

• 绝热压缩/膨胀：外层气体压缩升温，内层气体膨胀冷却
• 能量传递：内层气体角速度较外层更快，将能量传递到外层气体
• 涡流：内外层气体由于黏性摩擦产生强制涡影响传热
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• 摩擦热：外层气体与壁面摩擦产热

特点：无运动部件，无耗功；制冷系数小

B. 热能驱动制冷

1.4 吸收/吸附制冷循环
利用溶液/吸附表面代替压缩机械

{压缩吸气 = 吸收（吸附）
压缩排气 = 发生（解吸） (6)

一般包含制冷剂侧循环以及吸收剂（溶液）侧循环

1.5 空气蒸发制冷
利用水在未饱和空气中蒸发吸热进行冷却，一般适用于干燥地区

• 直接蒸发冷却

由于新增蒸气相较被冷却空气可忽略，故直接蒸发冷却可认为发生等焓过程，更接近湿球温度

ℎ1 + (𝑑2 − 𝑑1)ℎ𝑤 ≈ ℎ2 ⇔ ℎ1 ≈ ℎ2 (7)

湿空气的显热⟹水的相变潜热

蒸发冷却效率：

𝑒𝐷 = 𝑇𝑑 − 𝑇𝑑′

𝑇𝑑 − 𝑇𝑤
(8)

• 间接蒸发冷却

非接触式蒸发冷却

二次空气被直接蒸发冷却后，和一次空气在换热器中发生显热交换，一次空气再与冷却水在换热器中发生显

热交换（二次降温，更能接近露点温度）

1.6 溶液除湿制冷循环
特点：

• 适用于湿润环境，且中间得到干空气，蒸发扩散能力更强
• 适用于低品位热源利用
• 溶液中除湿剂可能具有强腐蚀性/毒性，危害人体健康

除湿空调原理：采用干燥剂（蒸发冷却）原理对空气进行调节的空调方式

• 湿热分离处理

• 增加蒸发冷源温度，增大COP

• 溶液侧循环

稀溶液→水蒸气排放到环境→浓溶液→空气除湿→稀溶液

• 空气侧循环

湿空气→浓溶液→干空气→蒸发冷却→湿空气

• 干燥剂冷却
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C. 其他制冷方式

1.7 热声制冷

1.8 辐射制冷

1.9 固态制冷
• 热电制冷
• 电卡制冷
• 弹热制冷
• 磁热制冷

1.10 稀释制冷

1.11 激光制冷

1.12 量子制冷∗

2. 制冷循环热力学特性分析
• 等温热源：热源温度在整个传热面上均相等
• 变温热源：热源温度在整个传热面上不完全相等

冰箱内温度：有限大等温热源

冰箱外温度：无限大等温热源

空调内温度：有限大变温热源

空调外温度：无限大变温热源

2.1 等温热源——逆卡诺循环
• 理想制冷系数

𝜀𝑘 = COP = 𝑞𝑐
𝑤

= 𝑇𝑐
𝑇ℎ − 𝑇𝑐

(9)

𝜕𝜀𝑘
𝜕𝑇𝑐

= 𝑇ℎ

(𝑇ℎ − 𝑇𝑐)
2

𝜕𝜀𝑘
𝜕𝑇ℎ

= − 𝑇𝑐

(𝑇ℎ − 𝑇𝑐)
2

|𝜕𝜀𝑘
𝜕𝑇𝑐

| > | 𝜕𝜀𝑘
𝜕𝑇ℎ

|

(10)

说明𝑇𝑐降低，𝑇ℎ升高均能导致制冷系数降低，且前者影响更甚

• 实际制冷系数（外部不可逆）

𝜀 = 𝑞𝑐
𝑤

< 𝜀𝑟 = 𝑇0
𝑇𝑘 − 𝑇0

(按可逆计算) (11)

其中𝑇𝑘为工质在高温热源放热温度，𝑇0为工质在低温热源吸热温度

• 热力完善度
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𝜂 = 𝜀
𝜀𝑟

(12)

2.2 变温热源——洛伦兹循环 &逆布雷顿循环
• 洛伦兹循环

‣ 两个和热源之间无温差的热交换过程
‣ 两个等熵过程

• 逆布雷顿循环
‣ 两个等压过程
‣ 两个等熵过程
‣ 存在回热过程

⟹ 制冷系数等于同𝑇𝑘, max和𝑇0, min的洛伦兹循环的制冷系数

𝜂 = 𝜀
𝜀𝐿

(13)

𝜀𝐿 = 𝑞0
𝑞𝑘 − 𝑞0

=
∫ 𝑇0 d𝑠

∫ 𝑇𝑘 d𝑠 − ∫ 𝑇0 d𝑠
=

̄𝑇0
̄𝑇𝑘 − ̄𝑇0

(14)

2.3 热泵循环
• 性能系数

𝜑 = COP = 𝑞ℎ
𝑤

= 1 + 𝜀 (15)

2.4 热能驱动的制冷循环
• 热力系数

𝜁0 = 𝜂𝜀0 = 𝑇𝐻𝐻 − 𝑇𝐻
𝑇𝐻

⋅ 𝑇𝑐
𝑇𝐻 − 𝑇𝑐

< 𝜀0 (16)

2.5 蒸汽喷射式制冷循环

2.6 气体液化循环
理论最小功：

𝑤min = 𝑤compress − 𝑤expand = Δ𝑔 − Δℎ (17)

二、制冷与低温工质性质

1. 制冷工质的选用
• 热力学性质：

‣ 合适压力、压力比
‣ 合适单位制冷量、单位容积制冷量
‣ 比功、单位容积压缩功小，循环效率高
‣ 等熵压缩终了温度不过高

• 输运性质：
‣ 粘度、密度尽量小
‣ 热导率大
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• 物理化学性质：
‣ 无毒、不易燃、不爆炸、使用安全
‣ 化学稳定性和热稳定性好
‣ 合适的溶解性
‣ GWP与 ODP低

• 其他：
‣ 原料充足、工艺简单、成本低、电绝缘性好

2. 制冷工质的分类及命名

制冷剂

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

纯工质

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
无机化合物：𝑯𝟐𝑶、𝑵𝑯𝟑、𝑪𝑶𝟐、𝑯𝟐、

𝟒𝑯𝒆、𝑵𝟐𝑶

有机化合物

{
{{
{{
{{
{{
{{
{{
{{
{{烷烃类：𝑪𝒎𝑯𝒏𝑭𝒘𝑪𝒍𝒙𝑩𝒓𝒚𝑰𝒛  (𝒏 + 𝒘 + 𝒙 + 𝒚 + 𝒛 = 𝟐𝒎 + 𝟐)

环烷烃类：芳香族、环状有机物

烯烃类：不饱和有机物

有机氧化物：醇、醚、酮、酸、酯、醛等

含氮氧化物：脂肪族胺

混合工质

{{
{{
{
{{
{{非均相

均相

{{
{
{{非共沸混合工质（非等温相变）

共沸混合工质（等温相变）

制冷剂

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

纯工质

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
无机化合物：𝑹-𝟕𝒙𝒙：𝑹-𝟕𝟏𝟖、𝑹-𝟕𝟏𝟕、𝑹-𝟕𝟒𝟒、𝑹-𝟕𝟎𝟐、𝑹-𝟕𝟎𝟒、𝑹-𝟕𝟒𝟒𝒂

有机化合物

{{
{{
{{
{{
{
{{
{{
{{
{{烷烃类：𝑹-(𝒎 − 𝟏)(𝒏 + 𝟏)(𝒘)𝑩(𝒚)𝑰(𝒛)  (同分异构加小写字母,首项为𝟎省略)

环烷烃类：𝑹-𝑪𝒙𝒙

烯烃类：𝑹-𝟏𝒙𝒙

有机氧化物：𝑹-𝟔𝒙𝒙

含氮氧化物：𝑹-𝟔𝒙𝒙

混合工质

{{
{{
{
{{
{{非均相

均相（不同组分后加大写字母）

{{
{
{{非共沸混合工质（非等温相变）：𝑹-𝟒𝒙𝒙

共沸混合工质（等温相变）：𝑹-𝟓𝒙𝒙
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考虑 ODP的新式命名规则：

3. 制冷工质的热力学性质与基础

3.1 状态方程

{
{{
{{
{{
{{
{{
{{
{
{
{{
{{
{{
{{
{{
{{
{
{

(𝜕𝑇
𝜕𝑠

)
𝑠

= ∞

(𝜕𝑇
𝜕𝑠

)
𝑣

= 𝑇
𝑐𝑣

(𝜕𝑇
𝜕𝑠

)
𝑝

= 𝑇
𝑐𝑝

(𝜕𝑇
𝜕𝑠

)
𝑇

= 0

(𝜕𝑇
𝜕𝑠

)
ℎ

= −𝑇𝛼ℎ
𝑣

< 0

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

(𝜕𝑝
𝜕ℎ

)
ℎ

= ∞

(𝜕𝑝
𝜕ℎ

)
𝑠

= 1
𝑣

(𝜕𝑝
𝜕ℎ

)
𝑣

= 1
𝑣 + 𝑐𝑣(𝜕𝑇

𝜕𝑝 )
𝑣

(𝜕𝑝
𝜕ℎ

)
𝑝

= 0

(𝜕𝑝
𝜕ℎ

)
𝑇

= − 1
𝑐𝑝𝛼ℎ

< 0
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• Ideal Gas EOS

𝑝𝑣 = 𝑅𝑇 (18)

• Real Gas EOS

𝑝𝑣 = 𝑍𝑅𝑇 (19)

• Van der Waals(VDW) EOS

(𝑝 + 𝑎
𝑣2 )(𝑣 − 𝑏) = 𝑅𝑇 (20)

• RK/RKS EOS

• PR EOS

• Virial EOS

𝑝 = 𝑅𝑇
𝑣

+ 𝐵𝑅𝑇
𝑣2 + 𝐶𝑅𝑇

𝑣3 + …

𝑍 = 𝑝𝑣
𝑅𝑇

= 1 + 𝐵𝜌 + 𝐶𝜌2 + …
(21)

• BWR EOS

• MH EOS

3.2 溶液与相平衡
• 摩尔分数𝑛
• 质量分数𝑤

𝑛𝑖 =

𝑤𝑖
𝑀𝑖

∑
𝑖

𝑤𝑖
𝑀𝑖

𝑚𝑖 = 𝑛𝑖𝑀𝑖

∑
𝑖

𝑛𝑖𝑀𝑖

(22)

• 溶液基本定律
‣ 理想溶液——拉乌尔定律 Raoult’s Law

𝑝𝑖 = 𝑝0
𝑖 𝑥𝑖 (23)

‣ 稀溶液——亨利定律 Henry’s Law

𝑝𝑖 = 𝐻𝑥𝑖 (24)
‣ 二元溶液——康诺瓦洛夫定律 Konovalov’s Law

𝑦𝐴
𝑦𝐵

= 𝑝0
𝐴𝑥𝐴

𝑝0
𝐵𝑥𝐵

二元溶液相平衡曲线若存在极值，则极值点液体与蒸气的组分相同（共沸溶液）

(25)

• 相平衡条件
‣ Gibbs Phase Law
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𝐹 = (2 + 𝐶 − 1)𝑃⏟⏟⏟⏟⏟
总自由度数

    − (𝑃 − 1)(𝐶 + 2)⏟⏟⏟⏟⏟⏟⏟
三大平衡条件所占用的自由度数

= 𝐶 − 𝑃 + 2 (26)

‣ 平衡常数（分离因子）

𝐾𝑖 = 𝑦𝑖
𝑥𝑖

= 𝑝0
𝑖
𝑝

(27)

‣ 相对挥发度

𝛼1,2 = 𝐾1
𝐾2

= 𝑝0
1

𝑝0
2

(28)

同温度下𝛼越大表示挥发性越强

• 二元溶液相平衡图（非共沸溶液）

𝑧𝐴 = 𝑎𝑥𝐴 + 𝑏𝑦𝐴  (两相总物质 A摩尔分数) (29)

等𝑧𝐴线表示单相混合物原组分，当发生相变时，做等𝑝线/等𝑇线交露点线和泡点线于两点，分别表示 A物质在
两相的组分

4. 制冷工质的物理化学性质
4.1 溶解性
• 溶水性
• 溶油性

4.2 稳定性
• 热稳定性

4.3 安全性
• 毒性
• 腐蚀性
• 可燃性

4.4 环保性

{
{{
{{
{
{
{{
{{
{
{泄漏性

环境友好性

{{
{{
{
{{
{{全球变暖潜能 GWP

臭氧层消耗潜能 ODP

总等效温室效应 TEWI
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常用制冷剂性质总结

三、蒸气制冷循环

1. 单级机械压缩制冷循环

1.1 理论循环

• 压缩过程：

𝑤 = ℎ2 − ℎ1 = 𝜅
𝜅 − 1

𝑝1𝑣1
(
(((𝑝2

𝑝1
)

𝜅−1
𝜅

− 1
)
)) (30)

• 冷凝过程：

𝑞𝑘 = ℎ2 − ℎ4 (31)
• 节流过程：

ℎ4 = ℎ5 (32)
• 蒸发过程：

𝑞0 = ℎ1 − ℎ5 = ℎ1 − ℎ4 (33)
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性能指标

• 单位制冷量

𝑞0 = 𝑟0(1 − 𝑥5) (34)
• 单位容积制冷量

𝑞𝑣 = 𝑞0
𝑣1

= ℎ1 − ℎ4
𝑣1

(35)

• 理论比功

𝑤0 = ℎ2 − ℎ1 (36)
• 单位冷凝热

𝑞𝑘 = ℎ2 − ℎ4 (37)
• 制冷系数

𝜀 = 𝑞0
𝑤0

(38)

• 卡诺循环制冷系数

𝜀𝑐 = 𝑇0
𝑇𝑘 − 𝑇0

(39)

• 热力完善度

𝜂 = 𝜀
𝜀𝑐

(40)
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1.2 改良循环

1. 过冷循环

• 实现装置：过冷器
• 制冷量增大：Δ𝑞0 = ℎ5 − ℎ5′ = 𝑐𝑝Δ𝑡
• 制冷系数增大：𝜀′ = 𝜀 + 𝑐𝑝Δ𝑡

𝑤
• 热力完善度变化取决于干度𝑥5与过冷度Δ𝑡
• 可减小节流的不可逆损失
• 相对卡诺效率中逆卡诺效率蒸发温度按过冷算

2. 过热循环

• 实现途径：压缩机吸气为过热蒸气
• 制冷量增大：Δ𝑞0 = ℎ1′ − ℎ1
• 理论比功增大：Δ𝑤 = (ℎ2′ − ℎ1′) − (ℎ2 − ℎ1)
• 制冷系数变化取决于制冷剂种类与过热度Δ𝑡
• 分为有效过热和无效过热；压缩机排气温度升高，
对压缩机工作不利；压比增大，容积效率降低

• 相对卡诺效率中逆卡诺效率蒸发温度按过热算

蒸发温度0°𝐶，冷凝温度−40°𝐶

3. 回热循环

• 实现装置：回热器
• 过热放热等于过冷吸热：ℎ1′ − ℎ1 = ℎ4 − ℎ4′

• 制冷量增大：Δ𝑞0 = ℎ5 − ℎ5′

• 理论比功增大：Δ𝑤 = (ℎ2′ − ℎ1′) − (ℎ2 − ℎ1)
• 制冷系数变化取决于制冷剂种类与过热度Δ𝑡
• 可减小节流的不可逆损失；压缩机排气温度升高，
对压缩机工作不利；压比增大，容积效率降低

• 相对卡诺效率中逆卡诺效率按理想循环算
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1.3 非共沸混合制冷剂循环

1. 单极压缩基本循环

蒸发 冷凝

• 由于蒸发/冷凝均等压变温，可适用于洛伦兹循环，
有利于减少传热不可逆损失

• 可通过相平衡图确定最佳组分
• 物性可由𝑋 = ∑𝑖 𝑋𝑖𝑤𝑖计算

2. 单极机械压缩自复叠循环（Auto-cascade）

• 利用高沸点制冷剂蒸发代替单一低沸点制冷剂的
冷凝过程，无需高的冷凝压力，同时实现较低制冷

温度

1.4 跨临界循环

• 冷凝器⟶气体冷却器

• 等压放热过程无冷凝，而是稠密气体⟶过冷液体

（均为超临界流体）的连续变化

• 放热温度有较大温度滑移，有利于减少传热不可逆
损失，制冷有利于热回收，热泵有利于制取更多热

量

• 存在最佳高压压力使得循环制冷系数最大
• 节流损失较大，一般采用膨胀机、引射器代替节流
阀改良

1.5 实际循环

• 流阻损失
‣ 吸入管道压降：压缩机压比增大、容积效率降低
‣ 排出管道压降：一般无影响

12
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‣ 液体管道压降：导致制冷剂非等温冷凝，影响后续节流效果
‣ 两相管道压降：一般无影响

• 漏热
‣ 两相管道、蒸发器漏热降低制冷量
‣ 吸入管道漏热可能导致无效过热

性能指标

简化后𝑝 − ℎ图

• 单位制冷量

𝑞0 = ℎ1 − ℎ5 (41)
• 单位容积制冷量

𝑞𝑣 = 𝑞0
𝑣1

(42)

• 理论比功

𝑤0 = ℎ2𝑠 − ℎ1 (43)
• 单位冷凝热

𝑞𝑘 = ℎ2 − ℎ4

ℎ2 = ℎ2𝑠 − ℎ1
𝜂𝑖

+ ℎ1

(44)

• 循环流量

𝑞𝑚 = 𝑄0
𝑞0

(45)

• 压缩机理论功率

𝑃0 = 𝑞𝑚𝑤0 (46)
• 压缩机指示功率

𝑃𝑖 = 𝑃0
𝜂𝑖

(47)

• 实际制冷系数

𝜀 = 𝑄0
𝑃𝑖

(48)

• 冷凝器热负荷

𝑄𝑘 = 𝑞𝑚𝑞𝑘 (49)
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循环性能计算

• 蒸发、冷凝温度

𝑡0 = 𝑡𝑐 − Δ𝑡0

𝑡𝑘 = 𝑡ℎ + Δ𝑡𝑘
(50)

• 蒸发、冷凝压力

𝑝0 = 𝑝(𝑡0),  𝑝𝑘 = 𝑝(𝑡𝑘) (51)
• 等熵排气温度

𝑇2𝑠 = 𝑇1(
𝑝𝑘
𝑝0

)
𝜅−1

𝜅

(52)

• 饱和点、等熵点比焓

ℎ = ℎ(𝑝, 𝑡) (53)
• 实际排气处比焓

ℎ2 = ℎ2𝑠 − ℎ1
𝜂𝑖

+ ℎ1 (54)

随𝑇𝑘变化，功率与制冷量的变化 随𝑇0变化，功率与制冷量的变化
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2. 两级机械压缩制冷循环

2.1 一级节流
冷凝压力直接节流至蒸发压力

1. 无中间冷却

• 即在单级压缩的基础上分为高压压缩机与低压压
缩机两级完成压缩

2. 中间不完全冷却

• 低压压缩机排出蒸气与中间冷却器流出中温蒸气
混合形成过热蒸气，降低压比及压缩终了温度

• 高压压缩机排出蒸气一部分节流后进入中间冷却
器用于冷却另一部分排出蒸气，使得其过冷，增大

制冷量

• 适用于等熵指数较低的制冷剂

3. 中间完全冷却

• 低压压缩机排出蒸气与中间冷却器流出中温蒸气
混合形成干饱和蒸气，降低压比及压缩终了温度

• 高压压缩机排出蒸气一部分节流后进入中间冷却
器用于冷却另一部分排出蒸气，使得其过冷，增大

制冷量

• 适用于等熵指数较高的制冷剂
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性能计算

1. 中间不完全冷却

• 单位制冷量

𝑞0 = ℎ0 − ℎ8

• 低压级理论比功

𝑤𝑑 = ℎ2 − ℎ1

• 低压压缩机流量

𝑞𝑚𝑑 = 𝑄0
𝑞0

• 低压压缩机体积流量
𝑞𝑣𝑑 = 𝑞𝑚𝑑𝑣1

• 低压压缩机实际功率

𝑃𝑒𝑑 = 𝑞𝑚𝑑
𝑤𝑑
𝜂𝑑

,   𝜂𝑑 = 𝜂𝑖𝑑𝜂𝑚𝑑

三者分别为低压绝热效率、指示效率、机械效率

• 高级压缩机流量

𝑞𝑚𝑔 = 𝑞𝑚𝑑
ℎ10 − ℎ6
ℎ10 − ℎ5

• 混合点比焓

(𝑞𝑚𝑔 − 𝑞𝑚𝑑)ℎ10 + 𝑞𝑚𝑑ℎ2′ = 𝑞𝑚𝑔ℎ3

• 高级压缩机理论比功

𝑤𝑔 = ℎ4 − ℎ3

• 高级压缩机实际功率

𝑃𝑒𝑔 = 𝑞𝑚𝑔
𝑤𝑔

𝜂𝑔

• 循环冷凝热负荷

𝑄𝑘 = 𝑞𝑚𝑔(ℎ4 − ℎ5′)
• 循环理论制冷系数

𝜀0 = 𝑄0
𝑞𝑚𝑑𝑤𝑑 + 𝑞𝑚𝑔𝑤𝑔

• 循环实际制冷系数

𝜀 = 𝑄0
𝑃𝑒𝑑 + 𝑃𝑒𝑔

2. 中间完全冷却

• 单位制冷量

𝑞0 = ℎ0 − ℎ9

• 低压级理论比功

𝑤𝑑 = ℎ2 − ℎ1

• 低压压缩机流量

𝑞𝑚𝑑 = 𝑄0
𝑞0

• 低压压缩机体积流量
𝑞𝑣𝑑 = 𝑞𝑚𝑑𝑣1

• 低压压缩机实际功率

𝑃𝑒𝑑 = 𝑞𝑚𝑑
𝑤𝑑
𝜂𝑑

,   𝜂𝑑 = 𝜂𝑖𝑑𝜂𝑚𝑑

三者分别为低压绝热效率、指示效率、机械效率

• 高级压缩机流量

𝑞𝑚𝑔 = 𝑞𝑚𝑑
ℎ2′ − ℎ8
ℎ3 − ℎ5

• 混合点比焓

(𝑞𝑚𝑔 − 𝑞𝑚𝑑)ℎ7 + 𝑞𝑚𝑑ℎ2′ = 𝑞𝑚𝑔ℎ3

• 高级压缩机理论比功

𝑤𝑔 = ℎ4 − ℎ3

• 高级压缩机实际功率

𝑃𝑒𝑔 = 𝑞𝑚𝑔
𝑤𝑔

𝜂𝑔

• 循环冷凝热负荷

𝑄𝑘 = 𝑞𝑚𝑔(ℎ4′ − ℎ5)
• 循环理论制冷系数

𝜀0 = 𝑄0
𝑞𝑚𝑑𝑤𝑑 + 𝑞𝑚𝑔𝑤𝑔

• 循环实际制冷系数

𝜀 = 𝑄0
𝑃𝑒𝑑 + 𝑃𝑒𝑔
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2.2 二级节流
冷凝压力先节流至中间压力，再节流至蒸发压力

• 相对一级节流可消除其存在的中间冷却器传热温差

• 但会出现高压压缩机润滑油进入低压压缩机致使油量不断减小

性能计算

• 主要关注中间压力𝑝𝑚和中间温度𝑡𝑚的确定

1. 无中间冷却

• 即在单级压缩的基础上分为高压压缩机与低压压
缩机两级完成压缩

2. 中间不完全冷却

• 低压压缩机排出蒸气与中间冷却器流出中温蒸气
混合形成过热蒸气，降低压比及压缩终了温度

• 高压压缩机排出蒸气全部节流至中间压力进入中
间冷却器，蒸气回流与低压压缩机排气混合，冷凝

液则继续节流，增大制冷量

• 适用于等熵指数较低的制冷剂

3. 中间完全冷却

• 低压压缩机排出蒸气与中间冷却器流出中温蒸气
混合形成干饱和蒸气，降低压比及压缩终了温度

• 高压压缩机排出蒸气全部节流至中间压力进入中
间冷却器，蒸气回流与低压压缩机排气混合，冷凝

液则继续节流，增大制冷量

• 适用于等熵指数较高的制冷剂

4. 双温制冷循环

• 在中间冷却器处引入中温蒸发器，实现中温制冷

最佳中间参数确定：

𝑝𝑚 = √𝑝0𝑝𝑘 (55)

𝑇𝑚 = √𝑇0𝑇𝑘 (56)

𝑡𝑚 = 0.4𝑡𝑘 + 0.6𝑡0 + 3 (57)
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3. 复叠式制冷循环
由若干个单极（多级）循环复合而成，通常高温系统使用高沸点制冷剂，低温系统使用低沸点制冷剂

• 无分离式与分凝式

• 精馏式
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氨系统及 R717/R744复叠式循环

两级复叠循环（虚线为除霜） 载冷循环（无低温级压缩）

氨（Ammonia ）：
• 熔点−77.73 °C
• 沸点−33.34 °C
• 溶解性（水）1:700 (0°C,100kPa)
• 有毒可燃（B2）
• ODP=0,GWP<1
• 特殊气味易检漏
• 气态和液态氨所需管道规格均小于其他大部分化
学制冷剂

• 氨的传热性能比绝大多数化学制冷剂更优秀
• 广泛应用于工业、商业和家庭领域，如冷库、制冷
设备和空调系统等。需要注意的是，氨气具有毒性

和腐蚀性，使用和操作氨制冷系统需要严格的安全

措施和操作规程。

二氧化碳（Carbon Dioxide）：
• 熔点−56.6 °C
• 沸点−78.4 °C
• 临界点 31°C
• 无毒不燃（A1）
• ODP=0,GWP=1
• 单位容积制冷量相当高,可减小制冷系统与热泵设
备尺寸

• 优良的流动特性，动力黏度低，设备压降损失较小
和操作氨制冷系统需要严格的安全措施和操作规

程。

• 优良的传热特性,导热系数较大，换热效果好
• 循环压缩比更低，容积效率较高
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4. 吸收式制冷循环
• 吸收式制冷是利用某些具有特殊性质的工质对，通过一种物质对另一种物质的吸收和释放，产生物质的状态
变化，从而伴随吸热和放热过程

• 分为制冷剂循环与吸收剂循环
• 主要以二元溶液（H2O/LiBr、 NH3/H2O等）作为制冷工质

4.1 蒸汽单效吸收制冷循环

溶液循环：

• 预热过程 2-7
• 发生过程 7-5-4
• 冷却过程 4-8
• 混合过程 2, 8-9
• 闪发过程 9-9′
• 吸收过程 9′−2

制冷剂循环

• 加热加压: 2-7-5
• 发生: 5-5′,4-4′蒸汽平均
焓值为 3′

• 分离冷凝: 3′-a-3
• 节流闪发: 3-b
• 蒸发: b-1′
• 吸收: 1′−1

设计准则
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4.2 蒸汽双效制冷循环
• 可利用高温、中温多热源，增大热利用率
• 同时避免单一溶液由于高压下浓度过高导致溶质析出

1. 串联 2. 并联

4.3 蒸汽多效制冷循环

• 制冷剂蒸汽冷凝热的多次利用、利用制冷剂蒸汽被溶液吸收产生的吸收热
• 随着效数增加，性能系数增大
• 高温 H2O/LiBr溶液物性研究、缓蚀剂的研究，以及轻量化等均是开发多效吸收式制冷机应解决的主要问题
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4.4 直燃式吸收制冷循环
直接使用燃烧产生的热能来驱动制冷循环

热水回路分类：

• 将冷却水回路切换成热水回路，以吸收器，冷凝器和加热盘管构成热水回路
• 热水和冷水采用同一回路，以蒸发器和加热盘管构成热水回路
• 专设热水回路，以热水器和加热盘管构成专用的热水回路

4.5 两级吸收制冷循环
• 可利用低于100° C 的热源驱动，有利于增大低品位热源的利用率

其与单效溴化锂吸收式冷水机组比，热力系数更低，仅为 0.3∼0.4左右，冷水耗量为单效机两倍，而且设备成
本大大增加，但可以达到更低的制冷温度
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4.6 扩散吸收制冷循环
常用NH3/H2O/H2（制冷剂/吸收剂/平衡剂）三元工质的扩散吸收式制冷剂
• 无溶液泵、膨胀阀、运动部件
• 系统中工质的运动完全依赖密度的差异、位置高低及分压力不同来实现流动扩散，因此各设备之间的相对位
置以及管道的倾斜度均有严格要求，否则会丧失制冷能力

• 扩散吸收制冷系统性能系数较低，通常为 0.2∼0.4

CO2制冷与热泵

二氧化碳

• 单位容积制冷量大
• 粘度小——减小流动阻力
• 表面张力小——减小相变过热量，增大换热效率
• 超临界下：密度接近液体，粘度、扩散系数接近气
体，传输性好；热物理参数随温度变化剧烈

1. 亚临界制冷循环

• 换热主要依靠潜热
• 主要早年使用

2. 超临界制冷循环

• 换热全部依靠显热
• 应用于汽车空调、复叠式制冷系统、热泵热水器

3. 跨临界制冷循环

• 蒸发主要依靠潜热
• 冷凝主要依靠显热

• 较大温度滑移，换热温差小
• 较高运行压力、较低压比，容积效率高
• 效率分析：

‣ 给定蒸发温度、冷却器出口温度

𝜕𝜀
𝜕𝑝

= 0 (58)

得最佳冷却压力

‣ 冷却器出口温度增大，COP显著下降
‣ 蒸发温度增大，COP提高
‣ CO2膨胀功较大、膨胀比较小，节流损失较大，可

用膨胀机代替节流器

4. 复叠式循环

一般用 R717、R290、R404A作为复叠高温系统

5. 二氧化碳热泵

优化：

• 膨胀机：系统性能系数提高显著，但加工造价昂贵
• 喷射器：降低压比、成本低、无运动部件、
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4.7 吸附式制冷循环

• 吸附制冷原理

• 典型吸附剂/制冷剂：
‣ 活性炭-甲醇/氨
‣ 硅胶-水
‣ 沸石分子筛-水

• 典型制冷循环：
‣ 间歇式循环
‣ 两床回热式循环
‣ 复叠式循环
‣ 热波式循环
‣ 两级及多级循环
‣ 回热回质循环

4.8 喷射式制冷循环

• 热能驱动制冷循环

• 在跨临界CO2循环中可用于回收部分膨胀功，减少节流损失，替代压缩机或减小压比，增大容积效率；降低

蒸发器压降，增大换热系数

• 常用于：锅炉给水、气体喷燃、起飞增推等
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光-热-冷/光-电-冷一体化比较

• 光-热-冷：
‣ 主要方式：热吸附/热吸收制冷
‣ 优点：

– 多品位梯度能量利用：太阳能加热不同的吸收
介质导致升温量不同，而选取不同的循环方案

则可有效利用来自不同温度（品位）的热量

– 无机械式压缩、无额外功耗
‣ 缺点：

– 需要选用特定的吸附/吸收介质，且多效循环
工艺复杂、成本较高

‣ 适用场景：
– 需多级热能利用的场所（如工厂废水废热余热
回收等）

– 建筑集热与室内制冷

• 光-电-冷：
‣ 主要方式：太阳能发电-压缩制冷/半导体制冷
‣ 优点：

– 太阳能发电有利于推动新质能源转型，减少化
石燃料发电的使用

– 在无法利用废热的情况下可通过光电转换利
用部分剩余的能量

‣ 缺点：
– PV板等对太阳辐射的能量选择性吸收，且光
电转换效率较低，制冷功率低

– 仍需机械部件进行制冷（半导体制冷效率较
低）

‣ 适用场景：
– 光照强且余热无法回收利用的地区
– 多种发电形式耦合调度（如风光电一体化）
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