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Statistical Mechanics

1 经典统计
超微观⟹微观⟹介观⟹宏观

微观结构 ⟹
统计力学

宏观结构

• Boltzmann 熵定理

Ω = Ω(𝑁, 𝐸, 𝑉 )
𝑆 = 𝑓(Ω) = 𝑘 ln Ω

𝑆 = 𝑆1 + 𝑆2

Ω = Ω1 × Ω2

(1)

• Definition: 微观状态分布

𝑁 = ∑
𝑖

𝑛𝑖

𝐸 = ∑
𝑖

𝑛𝑖𝜀𝑖
(2)

𝑛𝑖 = 𝐶𝑒− 𝜀𝑖
𝑘𝑇

{{
{
{{𝑛𝑖 能级𝜀𝑖上的粒子数

𝜀𝑖 能级

𝑒− 𝜀𝑖
𝑘𝑇 对应能级的 Boltzmann因子

(3)

𝐶 = 𝑁
∑

𝑖
𝑒− 𝜀𝑖

𝑘𝑇
(4)

𝑛𝑖
𝑁

= 𝑒− 𝜀𝑖
𝑘𝑇

∑
𝑖

𝑒− 𝜀𝑖
𝑘𝑇

(该能级下的粒子数目占比) (5)

⟨𝜀⟩ = 𝐸
𝑁

=
∑

𝑖
𝜀𝑖𝑒− 𝜀𝑖

𝑘𝑇

∑
𝑖

𝑒− 𝜀𝑖
𝑘𝑇

= ∑
𝑖

𝑒− 𝜀𝑖
𝑘𝑇

∑
𝑖

𝑒− 𝜀𝑖
𝑘𝑇

𝜀𝑖 (平均能级能量) (6)

• 统计体系分类
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‣ 粒子是否可以分辨
– 定域子体系：（可分辨）晶体等
– 离域子体系：（不可分辨）气体、流体

‣ 粒子是否相互作用
– 独立子体系

𝐸 = ∑ 𝑛𝑖𝜀𝑖 (7)

– 相依子体系

𝐸 = ∑ 𝑛𝑖𝜀𝑖 + 𝑈 (8)

1.1 定域子体系
量子态数

宏观态数（宏观可区分）

微观态数（微观可区分）or 热力学几率（每一种宏观态内的微观态数）

𝑊𝑖 = 𝑁!
∏𝑖 𝑛𝑖!

(9)

总微观状态数：

Ω(𝑁, 𝑉 , 𝐸) = ∑
∑𝑘 𝑛𝑘=𝑁, ∑𝑘 𝑛𝑘𝜀𝑘=𝐸

𝑊𝑖 = ∑
∑𝑘 𝑛𝑘=𝑁, ∑𝑘 𝑛𝑘𝜀𝑗=𝐸

𝑁!
∏𝑗 𝑛𝑗!

(10)

数学几率（热力学几率与总微观态数之比）

𝑃 = 𝑊𝑖
Ω

(11)

量子力学简并后的微观态数：

𝑊𝑖 = 𝑁! ∏
𝑗

𝑔𝑛𝑖
𝑗

𝑛𝑗!
(12)

𝑔𝑗 代表简并度 (13)

1.2 离域子体系
• 全同性修正

热力学几率

𝑊𝑖 = ∏
𝑗

𝑔𝑛𝑖
𝑗

𝑛𝑗!
(14)

Ω(𝑁, 𝑉 , 𝐸) = ∑
∑𝑘 𝑛𝑘=𝑁, ∑𝑘 𝑛𝑘𝜀𝑗=𝐸

∏
𝑗

𝑔𝑛𝑗
𝑗

𝑛𝑗!
(15)

1.3 最可几分布
• Stiring 公式
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𝑁! = (𝑁
𝑒

)
𝑁

(2𝜋𝑁)1
2   (𝑁 ≥ 20)

ln 𝑁! = 𝑁 ln 𝑁 − 𝑁 + 1
2

ln(2𝜋𝑁) ≈ 𝑁 ln 𝑁 − 𝑁  (𝑁 ≥ 100)
(16)

• 最可几分布

𝑊 ∗ = 𝑁!
∏𝑖 𝑛∗

𝑖 !
(17)

Ω ≈ 𝑊 ∗

ln Ω ≈ ln 𝑊 ∗ = 𝑁 ln 𝑁 − ∑ 𝑛∗
𝑖 ln 𝑛∗

𝑖

𝛿 ln 𝑊 ∗ = − ∑ ln 𝑛∗
𝑖𝛿𝑛∗

𝑖

𝛿2 ln 𝑊 ∗ = − ∑ 1
𝑛∗

𝑖
(𝛿𝑛∗

𝑖 )
2

(18)

由

ln 𝑊 = ln 𝑊 ∗ + 𝛿2 ln 𝑊 ∗ (19)

故有

ln 𝑊
𝑊 ∗ = − ∑ (𝛿𝑛∗

𝑖
𝑛∗

𝑖
)

2

𝑛∗ ⟶ 0 (20)

图 2: 双量子态系统最可几分布表格

图 3: 双量子态系统最可几分布示意图
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• 摘取最大项原理

ln Ω = ln 𝑊 ∗ (21)

1.4 Boltzmann 分布

1.4.1 条件微分方程
ln Ω(𝑁, 𝑉 , 𝐸) = ln 𝑊 ∗

ln 𝑊 = ln 𝑊 ∗ ⟺ d ln 𝑊 = 0

{{
{{
{{
{{
{{
{

d ln 𝑊 = ∑𝑖(
𝜕 ln 𝑊
𝜕𝑛𝑖

) d𝑛𝑖 = 0

d𝑁 = ∑𝑖 d𝑛𝑖 = 0

d𝐸 = ∑𝑖 𝜀𝑖 d𝑛𝑖 = 0

(22)

1.4.2 Lagrange待定系数法
𝜕 ln 𝑊
𝜕𝑛𝑖

− 𝛼 − 𝛽𝜀𝑖 = 0  (𝑖 = 1, 2, …, 𝑛) (23)

由

ln 𝑊 = ln ∏
𝑖

𝑔𝑛𝑖
𝑖

𝑛𝑖!
= ∑

𝑖
(𝑛𝑖 ln 𝑔𝑖 − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖) (24)

有

ln 𝑔𝑖
𝑛𝑖

− 𝛼 − 𝛽𝜀𝑖 = 0

𝑛𝑖 = 𝑔𝑖
𝑒𝛼𝑒𝛽𝜀𝑖

⇓

𝑛𝑖 = 𝑁𝑒−𝛽𝜀𝑖

∑
𝑖

𝑒−𝛽𝜀𝑖
,  𝛽 = 1

𝑘𝑇

(25)

2 单个分子的行为
2.1 微观运动形态
平动(translation)

转动(rotation)

振动(vibration) }}
}}
}
}}
}}

=分子内运动

电子运动(elctron)

核运动(nuclear) }}
}
}}

=分子外运动

• 能级大小排序：
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𝜀𝑡 < 𝜀𝑟 < 𝜀𝑣 < 𝜀𝑒 < 𝜀𝑛 (26)

• 分子总能量：

𝜀𝑖 = 𝜀𝑡
𝑖 + 𝜀𝑟

𝑖 + 𝜀𝑣
𝑖 + 𝜀𝑒

𝑖 + 𝜀𝑛
𝑖 (27)

一个 n原子分子有 3n个坐标值和 3n个动量值，即独立坐标个数（运动自由度）为 3n

运动自由度3𝑛

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
平动自由度3

转动自由度{
线性分子2

非线性分子3

振动自由度{
线性分子3𝑛−5

非线性分子3𝑛−6

电子量子数

核量子数

(28)

2.2 分子平动
• 三维平动子

𝜀𝑡 = ℎ2

8𝑚
(𝑛2

𝑥
𝑎2 +

𝑛2
𝑦

𝑏2 + 𝑛2
𝑧

𝑐2 )  (𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = 1, 2, 3, …) (29)

Cubic condition:

𝜀𝑡 = ℎ2

8𝑚𝑉 2
3
(𝑛2

𝑥 + 𝑛2
𝑦 + 𝑛2

𝑧) (30)

• 分子平动能隙

基本能隙（即第一激发态和基态间能级差）

Δ𝜀𝑡 = 𝜀𝑡(1, 1, 2) − 𝜀𝑡(1, 1, 1) (31)

Δ𝜀𝑡 ≈ 10−19𝑘𝑇

平动能隙较小，量子化不明显，通常温度下可视作连续(完全开放)
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2.3 分子转动
• 刚性转子

𝜀𝑟 = 𝐽(𝐽 + 1)ℎ2

8𝜋2𝐼
  (𝐽 = 0, 1, 2, 3, …) (32)

𝐼 = 𝜇𝑅2
0

𝑅0为分子平衡键长, 𝜇为分子折合质量
(33)

• 分子转动能隙

对双原子分子，两个原子的质量为𝑚1, 𝑚2

𝜇 = 𝑚1𝑚2
𝑚1 + 𝑚2

(34)

当转动量子数为𝐽时，简并度𝑔𝑟 = 2𝐽 + 1

Δ𝜀𝑟 ≈ 10−2𝑘𝑇

转动能隙较小，量子化不明显，通常温度下可视作连续(完全开放)

• 分子转动光谱

刚性转子模型纯转动谱为一组等距谱线Δ𝜈 = 2𝐵(𝐵为转动常数)

一般为远红外吸收光谱 25 ∼ 1000𝜇𝑚

2.4 分子振动
• 对称伸缩振动
• 非对称伸缩振动
• 面内弯曲振动

𝜀𝑣 = (𝑣 + 1
2
)ℎ𝜈  (𝑣 = 0, 1, 2, 3, …)

𝜈 = 1
2𝜋

√𝑘
𝜇

(35)

对任何能级，振动非简并，𝑔𝑣 = 1

• 分子振动能隙

Δ𝜀𝑣 ≈ 10𝑘𝑇

• 分子振动光谱

Δ𝐸 = ℎ𝜈

分子吸收光能的频率和分子振动频率相同
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即

𝜈 = 𝑐𝜈 = 1
2𝜋

√𝑘
𝜇

(36)

一般为红外光谱

2.5 分子的振-转耦合
• 气态水：自由转动
• 液态水：摇摆振动

2.6 分子平、转、振能级及量子数

2.7 电子运动与核运动
• 两种运动的能隙较大，故一般认为处于基态

不同物质的基态简并度𝑔𝑒,0, 𝑔𝑛,0可能不同，但同一种物质应相同

2.8 热运动与非热运动
• 热运动（平、转、振）
• 非热运动（电子运动、核运动）

Δ𝜀𝑒 ≈ 102𝑘𝑇
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2.9 分子光谱

2.9.1 红外光谱
为分子振动/转动光谱

样品受到频率连续变化的红外照射时，分子振动或转动会引起偶极矩的净变化，致使能级激发

• 对称分子：振动无偶极矩变化，无红外活性
• 非对称分子：振动有偶极矩变化，有红外活性

化学键越强、原子质量越小、键的振动频率越高，吸收峰右移

2.9.2 远红外光谱
一般为纯转动跃迁的吸收光谱（刚性转子则为等距谱线）

2.9.3 近红外光谱
不严格等距

2.9.4 拉曼光谱
基于拉曼散射效应分析散射光谱可得到分子振动、转动信息

• 拉曼散射： 光穿过透明介质被分子散射的光频率发生变化
‣ 弹性散射（Δ𝑓 = 0）
‣ 非弹性散射（Δ𝑓 ≠ 0）

不同的物质光频差不同，同一物质光频差和入射频率无关

• 瑞利散射线：散射光谱中和入射频率相同的谱线
• 斯托克斯线：散射光谱中小于入射频率的谱线
• 反斯托克斯线：散射光谱中大于入射频率的谱线

• 仅涉及转动跃迁——小拉曼光谱；涉及转-振耦合跃迁——大拉曼光谱
• 极性和非极性分子均能产生拉曼光谱（来源于感生偶极矩）
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• 拉曼活性：伴随有极化率变化的振动，和红外活性具有互补性

2.9.5 微波波谱
主要涉及转动、核自旋、电子自旋

• 原子、分子共振发射/吸收
• 核磁共振 NMR
• 电子自旋共振 ESR（电子顺磁共振 EPR）

2.9.6 紫外-可见光谱
主要为分子价电子吸收光谱（跃迁至反键轨道）

所需能量：

𝑛 → 𝜋∗ < 𝜋 → 𝜋∗ < 𝑛 → 𝜎∗ < 𝜎 → 𝜎∗ (37)

j

2.9.7 荧光光谱
荧光：受光激发分子从第一激发单重态的最低振动能级回到基态所发出的辐射（光致激发）

磷光：当分子从激发三重态跃迁到基态时，通常会发射光，这个过程叫做磷光。由于自旋禁阻的原因，磷光的

发射通常比荧光慢得多，因此磷光具有较长的衰减时间

3 宏观体系的行为
3.1 Hamilton坐标系
位置-动量空间

• 广义坐标 𝒒𝒊
• 广义速度

𝑞′
𝑖 = 𝜕𝑞𝑖

𝜕𝑡
(38)

• 广义动量 𝒑𝒊

𝑝𝑖 = 𝜕𝑇
𝜕𝑞′

𝑖
(39)
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• 体系总动能 𝑇

• 相空间

由(𝒒𝟏, 𝒑𝟏), (𝒒𝟐, 𝒑𝟐), …, (𝒒𝒇 , 𝒑𝒇)所构成的𝑓 × 2的概念化空间

{
𝜇−空间: 描述单个(n原子)分子运动状态的𝑓×2维空间

Γ−空间: 描述 N个分子运动状态的𝑁×𝑓×2维空间

• 相胞:相空空间中相点周边体积为ℎ𝑓的微小体积元。(Heisenberg不确定性原理)

• Hamilton方程(力场与速度场)

𝑞′ = 𝜕𝐻
𝜕𝑝

𝑝′ = −𝜕𝐻
𝜕𝑞

(40)

Hamilton函数:𝐻 = 𝑇 + 𝑈 (动能+势能)

3.2 统计平均
• 等几率假设

对𝑁, 𝑉 , 𝐸确定的热力学体系,每一个微观状态出现的几率相等

• 几率

𝑃𝑖 = lim
𝑁→∞

𝑁𝑖
𝑁

(41)

• 几率密度

𝑓(𝑞, 𝑝) = 1
𝑁

lim
ΔΓ→0

Δ𝑁
ΔΓ

= lim
ΔΓ→0

𝑃𝑖
ΔΓ

𝑃𝑖 = 𝑓𝑖(𝑞, 𝑝)Δ𝑞Δ𝑝  (离散)

𝑃𝑖 = 𝑓𝑖(𝑞, 𝑝) d𝑞 d𝑝  (连续)

(42)

• 统计平均

⟨𝐺⟩ = ∑
𝑖,𝑗

𝐺𝑖,𝑗(𝑞, 𝑝)𝑓𝑖(𝑞, 𝑝)Δ𝑞Δ𝑝  (离散)

⟨𝐺⟩ = ∫ 𝐺(𝑞, 𝑝)𝑓𝑖(𝑞, 𝑝) d𝑞 d𝑝  (连续)
(43)

3.3 配分函数
分子配分函数：

𝑞 = ∑
𝑖

𝑔𝑖𝑒− 𝜀𝑖
𝑘𝑇   (𝑜𝑟 ∑

𝑖
𝑒− 𝜀𝑖

𝑘𝑇 ) (44)

作为权重的归一化因子（有效量子态数之和）

⟨𝐺⟩ = 1
𝑞

∑
𝑖

𝐺𝑖𝑔𝑖𝑒− 𝜀𝑖
𝑘𝑇 (45)
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配分函数中任意两项之比为其对应两个能级上最可几分布分子数之比

𝑔0𝑒− 𝜀0
𝑘𝑇

𝑛0
= 𝑔1𝑒− 𝜀1

𝑘𝑇

𝑛1
= …… = 𝑔𝑖𝑒− 𝜀𝑖

𝑘𝑇

𝑛𝑖
= 𝑞

𝑁
= 𝑒𝛼 (46)

3.3.1 配分函数的拆分
粒子的总能量：

𝜀𝑖 = 𝜀𝑡
𝑖 + 𝜀𝑟

𝑖 + 𝜀𝑣
𝑖 + 𝜀𝑒

𝑖 + 𝜀𝑛
𝑖 (47)

粒子的总简并度：

𝑔𝑖 = 𝑔𝑡
𝑖 ⋅ 𝑔𝑟

𝑖 ⋅ 𝑔𝑣
𝑖 ⋅ 𝑔𝑒

𝑖 ⋅ 𝑔𝑛
𝑖 (48)

总配分函数：

𝑞𝑖 = 𝑞𝑡
𝑖 ⋅ 𝑞𝑟

𝑖 ⋅ 𝑞𝑣
𝑖 ⋅ 𝑞𝑒

𝑖 ⋅ 𝑞𝑛
𝑖 (49)

其中平动配分函数为外部配分函数，其他则为内部配分函数

3.3.2 基态能级
𝜀0

𝑖 = 𝜀𝑖 − 𝜀0 (50)

𝑞 = 𝑒− 𝜀0
𝑘𝑇 𝑞0 (51)

常温下

{{
{
{{𝜀0

𝑡 ≈ 0 ⇒ 𝑞𝑡,0 ≈ 𝑞𝑡

𝜀0
𝑟 = 0 ⇒ 𝑞𝑡,0 = 𝑞𝑟

(52)

其他种类能级能量零点的影响不能忽略

3.3.3 平动配分函数

𝑞𝑡 = ∑ ∑ ∑ exp[− ℎ2

8𝑚𝑘𝑇
(𝑛2

𝑥
𝑎2 +

𝑛2
𝑦

𝑏2 + 𝑛2
𝑧

𝑐2 )] = 𝑞𝑡
𝑥 ⋅ 𝑞𝑡

𝑦 ⋅ 𝑞𝑡
𝑧 (53)

𝑞𝑡
𝑥 = ∫

∞

0
𝑒−𝐶𝑛2

𝑥 d𝑛𝑥 = 1
2
( 𝜋

𝐶
)

1
2

= (2𝜋𝑚𝑘𝑇
ℎ2 )

1
2

𝑎 = 𝑎
Λ

(54)

𝑞𝑡 = (2𝜋𝑚𝑘𝑇
ℎ2 )

3
2

𝑉 = 𝑉
Λ3 (55)

3.3.4 转动配分函数

𝑞𝑟 = ∑
∞

𝐽=0
(2𝐽 + 1) exp[−𝐽(𝐽 + 1)ℎ2

8𝜋2𝐼𝑘𝑇
] = ∑

∞

𝐽=0
(2𝐽 + 1) exp[−𝐽(𝐽 + 1)Θ𝑟

𝑇
] (56)

𝑞𝑟 = ∫
∞

0
exp(−𝑥Θ𝑟

𝑇
) d𝑥 = 8𝜋2𝐼𝑘𝑇

ℎ2 = 𝑇
Θ𝑟

(57)

Θ𝑟为转动特征温度

• 线性分子

11
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𝑞𝑟 = 8𝜋2𝐼𝑘𝑇
𝜎ℎ2 (58)

𝜎为对称数

• 非线性分子

𝑞𝑟 =
8𝜋2(2𝜋2𝑘𝑇 )

3
2

𝜎ℎ2 (𝐼𝑥 ⋅ 𝐼𝑦 ⋅ 𝐼𝑧)
1
2 (59)

3.3.5 振动配分函数

𝑞𝑣 = ∑
∞

𝑣=0
exp[−

(𝑣 + 1
2)ℎ𝜈

𝑘𝑇
] = ∑

∞

𝑣=0
exp[−Θ𝑣

𝑇
(𝑣 + 1

2
)]

= exp(−Θ𝑣
2𝑇

)[1 + exp(−Θ𝑣
𝑇

) + exp(−2Θ𝑣
𝑇

) + …]

(60)

低温下由

Θ𝑣
𝑇

≫ 1

⇒

{
{{
{{
{
{
{{
{{
{
{

𝑞𝑣 = 1

(exp(Θ𝑣
2𝑇

) − exp(−Θ𝑣
2𝑇

))

𝑞𝑣
0 = 1

1 − exp(−Θ𝑣
𝑇

)

(61)

3.3.6 电子配分函数

𝑞𝑒 = 𝑔𝑒
0 exp(− 𝜀𝑒

0
𝑘𝑇

)[1 + 𝑔𝑒
1

𝑔𝑒
0

exp(−𝜀𝑒
1 − 𝜀𝑒

0
𝑘𝑇

) + …] (62)

电子能隙较大，故方括号内第二项及后可略去（电子通常处于基态）

𝑞𝑒
0 = 𝑔𝑒

0 exp(− 𝜀𝑒
0

𝑘𝑇
) (63)

若𝜀𝑒
0 = 0，则

𝑞𝑒 = 𝑔𝑒
0 = 2𝑗 + 1 (64)

3.3.7 原子核配分函数

𝑞𝑛 = 𝑔𝑛
0 exp(− 𝜀𝑛

0
𝑘𝑇

)[1 + 𝑔𝑛
1

𝑔𝑛
0

exp(−𝜀𝑛
1 − 𝜀𝑛

0
𝑘𝑇

) + …] (65)

基态与第一激发态能级间隔较大，故方括号内第二项及后可略去（核通常处于基态）

𝑞𝑛
0 = 𝑔𝑛

0 exp(− 𝜀𝑛
0

𝑘𝑇
) (66)

若𝜀𝑛
0 = 0，则

12
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𝑞𝑛 = 𝑔𝑛
0 = 2𝑠𝑛 + 1 (67)

3.4 热力学量与粒子配分函数的关系
以离域子体系为例

• 热力学能

𝑈 = ∑
𝑖

𝑛𝑖𝜀𝑖 = 𝑁
𝑞

∑
𝑖

𝑔𝑖 exp(− 𝜀𝑖
𝑘𝑇

)𝜀𝑖 = 𝑁𝑘𝑇 2(𝜕 ln 𝑞
𝜕𝑇

)
𝑉 ,𝑁

(68)

• 熵

𝑆 = 𝑘 ln Ω ≈ 𝑘 ln 𝑊 ∗

≈ 𝑘 ∑
𝑖

(𝑛𝑖 ln 𝑔𝑖 − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖) = 𝑘(−𝑁 ln 𝑁
𝑞

+ 𝑈
𝑘𝑇

+ 𝑁)

= 𝑈
𝑇

+ 𝑁𝑘 ln 𝑞𝑒
𝑁

≈ 𝑈
𝑇

+ 𝑘 ln 𝑞𝑁

𝑁!

(69)

• Helmholtz自由能

𝐹 = −𝑘𝑇 ln 𝑞𝑁

𝑁!
(70)

• 压强

𝑝 = −(𝜕𝐹
𝜕𝑉

)
𝑇,𝑁

(71)

3.4.1 熵
• 统计熵

𝑆stat = 𝑆𝑡 + 𝑆𝑟 + 𝑆𝑣 (72)

• 第三定律熵

即标准摩尔熵𝑆Θ
𝑚

• 量热熵

13
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即通过热力学关系测定𝑆cal

• 残余熵(构型熵)

𝑆remain = 𝑆stat − 𝑆cal (73)

即与真实平衡态熵之差

4 系综统计
4.1 系综 Ensemble
• 系统：Γ −空间中的一个点（相胞）

• 系综：即在Γ −空间中某一宏观状态（如𝑁, 𝑉 , 𝑇 )下所有微观状态样本（或相点）的集合

• 系综密度（相密度）：Γ −空间中单位相体积内相点的数量

• 系综分布函数（相点几率密度）

d𝒩
𝒩

= 𝑃𝑖(𝑞, 𝑝, 𝑡) = 𝜌(𝑞, 𝑝, 𝑡) dΓ
𝒩

= 𝑓(𝑞, 𝑝, 𝑡) dΓ

𝑓(𝑞, 𝑝, 𝑡) = 𝜌
𝒩

(74)

时间平均𝐺̄与系综平均⟨𝐺⟩

• 各态历经假说：宏观时空范围内，微观状态点将会以一定几率遍历相空间中等状态面的所有区域
• 时间平均假设：被研究体系某性质的时间平均值等于该性质的系综平均

即

𝐺̄ = ⟨𝐺⟩ (75)

4.2 系综分类
• 微正则系综（𝑁, 𝑉 , 𝐸）

• 正则系综（𝑁, 𝑉 , 𝑇）

• 巨正则系综（𝜇, 𝑉 , 𝑇）

• 等温等压系综（𝑁, 𝑝, 𝑇）

• 刘维尔定理（相密度守恒）

保守力学体系下，相空间体系中的相点沿任何相轨迹运动时，其相密度和相几率均不随时间变化

d𝜌
d𝑡

= d𝑓
d𝑡

= 0 (76)

4.2.1 微正则系综
• 孤立体系

𝑓 = {𝐶    𝐸 ≤ 𝐻 ≤ 𝐸 + 𝛿𝐸
0    𝐻 < 𝐸, 𝐻 > 𝐸 + 𝛿𝐸 (77)

𝐶 = 1
∫

𝛿𝐸
dΓ

= 1
Ω(𝑁, 𝑉 , 𝐸)

(78)
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⟨𝐺⟩ = lim
𝛿𝐸→0

∫
𝛿𝐸

𝐺 dΓ
∫

𝛿𝐸
dΓ

(79)

4.2.2 正则系综
• 恒温封闭体系

1
𝑓

d𝑓
d𝐸

= −𝛽 = 1
𝑘𝑇

𝑓 = 𝐶𝑒− 𝐸
𝐾𝑡

(80)

𝐶 = 1
∫

Γ
𝑒− 𝐸

𝑘𝑇 dΓ
= 1

𝑍
(81)

𝑍为正则配分函数（归一化因子）

{
{{
{{
{
{
{{
{{
{
{

𝑃𝑗 =
𝑛𝑗

𝒩
= 𝑔𝑖𝑒−

𝐸𝑗
𝑘𝑇

𝑍
    (微态𝑗出现的几率)

𝜌𝑗 =
𝑛𝑗

𝑔𝑗
= 𝒩𝑒−

𝐸𝑗
𝑘𝑇

𝑍
    (相密度（系综密度）)

𝑓𝑗 =
𝜌𝑗

𝒩
= 𝑒−

𝐸𝑗
𝑘𝑇

𝑍
    (几率密度（系综分布函数）)

(82)

4.2.3 巨正则系综
• 开放体系

1
𝑓

d𝑓
d𝐸

= −𝛽 = 1
𝑘𝑇

1
𝑓

d𝑓
d𝑁

= 𝛾 = 𝜇
𝑘𝑇

𝑓 = 𝐶𝑒− 𝐸
𝑘𝑇 +𝑁𝐴𝜇𝐴

𝑘𝑇

(83)
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𝐶 = 1
∫

Γ
𝑒− 𝐸

𝑘𝑇 +𝑁𝐴𝜇𝐴
𝑘𝑇

dΓ = 1
Ξ

= 1
𝑍 ⋅ 𝑒

𝑁𝐴𝜇𝐴
𝑘𝑇

(84)

Ξ称为巨（正则）配分函数

• 巨正则系综的分布：

{{
{{
{{
{{
{{
{∑

𝑖
∑
𝑁𝐴

𝑛𝑖(𝑁𝐴) = 𝒩   (系综标本体系总数)

∑
𝑖

∑
𝑁𝐴

𝑛𝑖(𝑁𝐴)𝐸𝑖(𝑁𝐴) = 𝒩⟨𝐸⟩   (系综总能量)

∑
𝑖

∑
𝑁𝐴

𝑛𝑖(𝑁𝐴)𝑁𝐴 = 𝒩⟨𝑁𝐴⟩   (系综总粒子数)

(85)

• 巨正则系综 Boltzmann分布

𝑊 = 𝒩! ∏
𝑖

∏
𝑁𝐴

[𝑔𝑖(𝑁𝐴)]𝑛𝑖(𝑁𝐴)

𝑛𝑖(𝑁𝐴)!
(86)

𝑛𝑖(𝑁𝐴) = 𝒩
∑

𝑖
∑
𝑁𝐴

𝑔𝑖(𝑁𝐴)𝑒−𝛽𝐸𝑖(𝑁𝐴)𝑒𝛾𝑁𝐴
𝑔𝑖(𝑁𝐴)𝑒−𝛽𝐸𝑖(𝑁𝐴)𝑒𝛾𝑁𝐴

= 𝒩
Ξ

𝑒−𝐸𝑖(𝑁𝐴)
𝑘𝑇 𝑒

𝜇𝐴𝑁𝐴
𝑘𝑇

(87)

• 巨配分函数

Ξ = Ξ(𝜇𝐴, 𝑉 , 𝑇 ) = ∑
𝑁𝐴

𝑍(𝑁𝐴, 𝑉 , 𝑇 )𝑒
𝑁𝐴𝜇𝐴

𝑘𝑇 (88)

{
{{
{{
{
{
{{
{{
{
{

𝑃𝑗 =
𝑛𝑗(𝑁𝐴)

𝒩
= 𝑔𝑖(𝑁𝐴)𝑒−

𝐸𝑗(𝑁𝐴)
𝑘𝑇 𝑒

𝜇𝐴𝑁𝐴
𝑘𝑇

Ξ
    (微态𝑗出现的几率)

𝜌𝑗 =
𝑛𝑗(𝑁𝐴)
𝑔𝑗(𝑁𝐴)

= 𝒩𝑒−
𝐸𝑗(𝑁𝐴)

𝑘𝑇 𝑒
𝜇𝐴𝑁𝐴

𝑘𝑇

Ξ
    (相密度（系综密度）)

𝑓𝑗 =
𝜌𝑗

𝒩
= 𝑒−

𝐸𝑗(𝑁𝐴)
𝑘𝑇 𝑒

𝜇𝐴𝑁𝐴
𝑘𝑇

Ξ
    (几率密度（系综分布函数）)

(89)
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• 巨势

𝑋 = 𝐹 − 𝐺 = −𝑝𝑉 = −𝑘𝑇 ln Ξ (90)

4.3 涨落
• 热力学量围绕平均值的瞬间偏离

4.3.1 定义
• 偏差

𝜎𝐺 = 𝐺 − ⟨𝐺⟩ (91)
• 涨落

𝜎2
𝐺 = ⟨(𝐺 − ⟨𝐺⟩)2⟩ = ⟨𝐺2⟩ − ⟨𝐺⟩2 (92)

• 相对涨落

𝜎2
𝐺

⟨𝐺⟩2 = ⟨𝐺2⟩ − ⟨𝐺⟩2

⟨𝐺⟩2 (93)

17



Institute of Refrigeration and Cryogenic

4.3.2 正则系综涨落
• 能量涨落

⟨𝐸⟩ = ∑ 𝐸𝑖𝑒−𝐸𝑖
𝑘𝑇

𝑍
(94)

𝜎2
𝐸 = ⟨𝐸2⟩ − ⟨𝐸⟩2 = 𝑘𝑇 2(𝜕⟨𝐸⟩

𝜕𝑇
)

𝑁,𝑉
= 𝑘𝑇 2𝐶𝑉 (95)

𝜎2
𝐸

⟨𝐸⟩2 = 𝑂( 1
𝑁

)

𝜎𝐸
⟨𝐸⟩

= 𝑂( 1√
𝑁

)

(96)

• 压强涨落

𝜎2
𝑝 = ⟨𝑝2⟩ − ⟨𝑝⟩2 = 𝑘𝑇[(𝜕⟨𝑝⟩

𝜕𝑉
)

𝑁,𝑇
− ⟨ 𝜕𝑝

𝜕𝑉
⟩] (97)

𝜎2
𝑝

⟨𝑝⟩2 = 𝑘𝑇
𝑝2 [(𝜕⟨𝑝⟩

𝜕𝑉
)

𝑁,𝑇
− ⟨ 𝜕𝑝

𝜕𝑉
⟩] (98)

𝐸 = 𝑂(𝑁𝑘𝑇 ) = 𝑂(𝑝𝑉 ) (99)

𝜎2
𝑝

⟨𝑝⟩2 ≈ 𝜎2
𝐸

⟨𝐸⟩2 = 𝑂( 1
𝑁

) (100)

4.3.3 巨正则系综涨落
• 压强涨落

𝜎2
𝑝 = 𝑘𝑇[(𝜕⟨𝑝⟩

𝜕𝑉
)

𝜇,𝑇
− ⟨ 𝜕𝑝

𝜕𝑉
⟩] (101)

𝜎2
𝑝

⟨𝑝⟩2 = 𝑘𝑇
𝑝2 ⟨ 𝜕𝑝

𝜕𝑉
⟩ = 𝑂( 1

𝑁
) (102)

• 粒子数（密度）涨落

𝜎2
𝑁 = 𝑘𝑇(𝜕⟨𝑁⟩

𝜕𝑉
)

𝑉 ,𝑇
= 𝑁𝑘𝑇(𝜕𝜌

𝜕𝑝
)

𝑇
= 𝑁2𝑘𝑇

𝑉
𝜅 (103)
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𝜎2
𝜌

⟨𝜌⟩2 = 𝜎2
𝑁

⟨𝑁⟩2 = 𝑘𝑇
𝑉

𝜅 = 𝑂( 1
𝑁

) (104)

5 流体统计理论

5.1 相依子体系配分函数
• 仅平动配分函数（外部配分函数）与𝑈有关

𝐸 = 1
2𝑚

∑
𝑖

(𝑝2
𝑥𝑖 + 𝑝2

𝑦𝑖 + 𝑝2
𝑧𝑖) + 𝑈(𝑞) (105)

𝑍外 = 1
𝑁!ℎ3𝑁 ∫ … ∫ exp[− 1

2𝑚𝑘𝑇
∑

𝑖
(𝑝2

𝑥𝑖 + 𝑝2
𝑦𝑖 + 𝑝2

𝑧𝑖)] d𝑝 × ∫ … ∫ exp[−𝑈(𝑞)
𝑘𝑇

] d𝑞 (106)

• 平动贡献项

1
𝑁!ℎ3𝑁 ∫ … ∫ exp[− 1

2𝑚𝑘𝑇
∑

𝑖
(𝑝2

𝑥𝑖 + 𝑝2
𝑦𝑖 + 𝑝2

𝑧𝑖)] d𝑝

= 1
𝑁!ℎ3𝑁 ∏

𝑖
∫

+∞

−∞
exp[− 𝑝2

𝑖
2𝑚𝑘𝑇

] d𝑝𝑖 = 1
𝑁!

[√2𝜋𝑚𝑘𝑇
ℎ2 ]

3𝑁

= 1
𝑁!Λ3𝑁

(107)

• 构型积分（位形配分函数）

只取决于分子间距离

𝑈(𝑞) = 𝐶2
𝑛𝑢(𝑟12) (108)

Mayer函数

𝑓𝑖𝑗(𝑟𝑖𝑗) = exp[−
𝑢(𝑟𝑖𝑗)

𝑘𝑇
] − 1 (109)

故

𝑍𝑐 = ∫ exp[−𝑈(𝑞)
𝑘𝑇

] d𝑞 = ∫ exp[−𝐶2
𝑛

𝑢(𝑟𝑖𝑗)
𝑘𝑇

] d𝑟1… d𝑟𝑁 (110)
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𝐼𝑁 = ∫ exp[−𝐶1
𝑁−1

𝑢(𝑟𝑖𝑁)
𝑘𝑇

] d𝑟𝑁 = ∏
𝑁−1

𝑖≠𝑁
∫ exp[−𝑢(𝑟𝑖𝑁)

𝑘𝑇
] d𝑟𝑁 = ∫ ∏

𝑁−1

𝑖≠𝑁
(1 + 𝑓𝑖𝑁) d𝑟𝑁

≈ ∫(1 + ∑
𝑁−1

𝑖
𝑓𝑖𝑁) d𝑟𝑁 = 𝑉 + (𝑁 − 1) ∫ 𝑓𝑖𝑁 d𝑟𝑁 = 𝑉 + (𝑁 − 1)𝛽1

(111)

𝑍𝑐 = 𝐼𝑁𝐼𝑁−1…𝐼1 = [𝑉 + (𝑁 − 1)𝛽1][𝑉 + (𝑁 − 2)𝛽1]…𝑉

= 𝑉 𝑁[1 + 1
2

𝑁2𝛽1
𝑉

+ …]
(112)

ln 𝑍𝑐 ≈ 𝑁 ln 𝑉 + 1
2

𝑁2𝛽1
𝑉

(113)

5.1.1 状态方程

𝑝 = 𝑘𝑇(𝜕 ln 𝑍𝑐
𝜕𝑉

)
𝑇,𝑁

= 𝑁𝑘𝑇
𝑉

(1 − 𝑁𝛽1
2𝑉

) (114)

• 第二维里系数

𝐵(𝑇 ) = −1
2
𝑁𝛽1 = −2𝜋𝑁 ∫

∞

0
[𝑒−𝑢(𝑟)

𝑘𝑇 − 1]𝑟2 d𝑟 (115)

5.2 真实气体与理想气体

根分析

• 气相：单实根，双共轭虚根
• 气液共存：最大根为气相摩尔体积，最小根为液相摩尔体积，中间根不稳定无意义
• 临界点：三重实根
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5.3 液体的统计理论

5.3.1 格子理论（似晶格理论）
假设溶液中存在类似晶格的结构，溶液分子位于晶格节点，围绕每个分子最邻近的其它分子有一平均数目，称

为配位数

• 正规溶液（无混合熵）

𝑉 𝐸 = 𝑆𝐸 = 0 (116)

𝐺𝐸 = 𝑈𝐸 = (𝑛1𝑉𝑚1 + 𝑛2𝑉𝑚2)𝜑1𝜑2(𝛿1 − 𝛿2)
2 (117)

• 无热溶液（无焓变）

𝐻𝐸 = 0 (118)

𝐺𝐸 = −𝑇𝑆𝐸 = 𝑅𝑇(𝑛1 ln 𝜑1
𝑥1

+ 𝑛2 ln 𝜑2
𝑥2

) (119)

• 活度系数

ln 𝛾𝑖 = 1
𝑅𝑇

(𝜕𝐺𝐸

𝜕𝑛𝑖
)

𝑇,𝑝,𝑛𝑗≠𝑖

(120)

5.3.2 自由体积理论（胞腔理论）
液体的结构假定为一种类似晶体的结构，将液体体积按分子数分割成 N个晶胞(即胞腔)，设每个胞腔只含一个
分子，每个分子只在它自己的胞腔内活动而与邻近分子无关。允许分子有扩散行为。

• 分子在胞腔内的自由体积可按位能函数来定义，可以认为是对一个分子的构形积分。

𝑈(𝑞) = 𝑢0 + ∑
𝑁

𝑖
−𝛽𝑢(𝑟𝑖) (121)

𝑍𝑐 = 𝑒−𝛽𝑢0(∫ 𝑒−𝛽𝑢(𝑟) d𝑟)
𝑁

= 𝑒−𝛽𝑢0𝑉 𝑁
𝑓 (122)

𝑍 = 𝑍𝑡𝑍𝑖𝑛𝑡𝑍𝑐 = 1
𝑁!

𝑞𝑁
𝑡 𝑞𝑁

𝑖𝑛𝑡𝑒−𝛽𝑢0𝑉 𝑁
𝑓 (123)

• 硬球模型
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• 谐振子模型

5.3.3 分布函数理论
• 径向分布函数

与一指定分子相距 r处，分子的局部数密度与平均数密度之比

𝑔(𝑟) = 𝜌(𝑟)
𝜌0

(124)

• 液体近程有序，长程无序
• 晶体全程有序
• 气体全程无序

利用 X射线、中子衍射测定液体结构：衍射/入射强度正比于球壳内粒子数

• n体分布函数

𝜌(𝑛)( ⃗𝑟1… ⃗𝑟𝑛) = 𝐶𝑛
𝑁𝑝(𝑛)( ⃗𝑟1… ⃗𝑟𝑛) (125)

• n体相关函数

𝑔(𝑛)( ⃗𝑟1… ⃗𝑟𝑛) = 𝜌(𝑛)( ⃗𝑟1… ⃗𝑟𝑛)
𝜌𝑛 ≈ 𝑁𝑛

𝜌𝑛 𝑝(𝑛)( ⃗𝑟1… ⃗𝑟𝑛) = 𝑉 𝑛𝑝(𝑛)( ⃗𝑟1… ⃗𝑟𝑛) (126)

22



Institute of Refrigeration and Cryogenic

• 𝑛 = 1

𝜌(1) = 𝑁
𝑉

= 𝜌 (127)

• 𝑛 = 2即径向分布函数

𝑔(𝑟) = 𝑔(2)( ⃗𝑟1 ⃗𝑟2) = 𝑉 2𝑝(2)( ⃗𝑟1 ⃗𝑟2)

= 𝑉 2

𝑍𝑐
∫ exp[−𝛽𝑈( ⃗𝑟1… ⃗𝑟𝑁)] d ⃗𝑟3… d ⃗𝑟𝑁

(128)

可代入求解各状态量及状态方程

• 𝑛 = 𝑛

• 积分方程理论

总相关函数

ℎ(𝑟) = 𝑔(𝑟) − 1 (129)

OZ方程

ℎ(𝑟12) = 𝐶(𝑟12) + 𝜌 ∫ 𝐶(𝑟13)ℎ(𝑟23) d ⃗𝑟3 (130)
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5.3.4 微扰理论
选定一种参考流体（如LJ流体、硬球流体），该参考流体的热力学性质是已知的，如果对该参考流体的哈密顿量
作一个微小的扰动，得到一个新的体系，该新体系的热力学性质可以利用统计力学理论从参考流体近似推出。

微扰展开：

𝑈(𝑞) = 𝑈 (0)(𝑞) + 𝑈 (1)(𝑞) (131)

𝑍𝑐 = 𝑍(0)
𝑐 × ⟨exp[−𝛽𝑈 (1)]⟩

0
(132)

𝐹 = −𝑘𝑇 ln 𝑍 = −𝑘𝑇 ln 𝑍𝑐
𝑁!Λ3𝑁 (133)

−𝛽𝐹 = −𝛽𝐹 (0) − 𝛽𝐹 (1) (134)

𝐹 = 𝐹 (0) + 𝐹 (1) (135)

↑参考流体自由能与微扰自由能
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温度不太低时

𝐴 = 𝐴(0) + 𝜔1 − 𝛽
2!

𝜔2 + 𝑂(𝛽2) (136)

5.3.5 对应状态理论
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5.4 混合物性质计算

𝑈𝑚𝑖𝑥 = 𝑁2

2
∑

𝑖
∑

𝑗
𝑥𝑖𝑥𝑗𝑢𝑖𝑗(𝑟𝑖𝑗) (137)

𝑍 = 1
𝑁!

(
𝑍𝐼,1

Λ3
1

)
𝑁1

(
𝑍𝐼,2

Λ3
2

)
𝑁2

𝑍𝑐,𝑚𝑖𝑥 (138)
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6 分子相互作用
6.1 分子间相互作用力

• 范德华力：弱相互作用+短程
‣ 取向力：偶极-偶极（极性分子间静电作用力）
‣ 诱导力：偶极-诱导偶极（极性与其他）
‣ 色散力：瞬时偶极-瞬时偶极（非极性、极性均有）
‣ 氢键、电荷转移（弱化学相互作用）

6.1.1 取向力
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𝑢𝐾 = 𝑞𝑎𝑞𝑏(
1
𝑟

+ 1
𝑟12

− 1
𝑟1𝑏

− 1
𝑟2𝑎

) = …(球坐标变换)

= −𝜇𝑎𝜇𝑏
𝑟3 [2 cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2 cos(𝜑1 − 𝜑2)]

(139)

• 与空间取向有关
• 各种空间取向（相对位形）可能出现

⟨𝑢𝐾⟩ = −2
3

𝜇𝑎𝜇𝑏
𝑟6𝑘𝑇

(140)

6.1.2 诱导力
永久偶极与诱导偶极之间的相互作用，存在于极性分子与非极性分子之间，或极性分子与极性分子之间

𝜇𝑏 = 𝛼𝑏𝐹 (141)

𝑢𝐷 = − ∫
𝜇𝑏

0
𝐹 d𝜇𝑏 = −1

2
𝛼𝑏𝐹 2 = −1

2
𝛼𝑏

1
𝑟6 (𝜇2

𝑎𝑥 + 𝜇2
𝑎𝑦 + 𝜇2

𝑎𝑧) (142)

𝑢𝐷 = 𝑢𝐷(𝑎→𝑏) + 𝑢𝐷(𝑏→𝑎) (143)

⟨𝑢𝐷⟩ = − 1
𝑟6 (𝛼𝑎𝜇2

𝑏 + 𝛼𝑏𝜇2
𝑎) (144)

6.1.3 色散力
瞬时偶极之间的相互作用，存在于所有分子之间，同类型分子距离相等时，相对分子质量越大，其色散力越大

⟨𝑢𝐿⟩ = −3
2

𝐼𝑎𝐼𝑏
𝐼𝑎 + 𝐼𝑏

𝛼𝑎𝛼𝑏
𝑟6 (145)

6.1.4 氢键
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6.1.5 范德华力

6.2 分子势能函数

𝑢(𝑟) = 𝐴
𝑟𝑛 − 𝐵

𝑟𝑚 (146)

d𝑢
d𝑟

|
𝑟=𝑟0

= 0,   𝑢(𝑟)|
𝑟=𝑟0

(147)

𝐴 = 𝑚
𝑚 − 𝑛

𝑢0𝑟𝑛
0 ,   𝐵 = 𝑛

𝑛 − 𝑚
𝑢0𝑟𝑚

0 (148)

6.2.1 Lennard-Jones 势能函数
12 − 6势能函数(m=12,n=6)
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6.2.2 Kihara 势能函数

6.2.3 Stockmeyer 势能函数

6.2.4 通用分子势能函数（TIPs）

6.2.5 Buckingham 势能函数
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6.2.6 Morse 势能函数

𝑢(𝑟) = 𝐷𝑒[1 − 𝑒−𝑎(𝑟−𝑟𝑒)]2 (149)

6.3 简化模型

6.3.1 硬球势能函数

6.3.2 方阱势能函数
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6.3.3 Sutherland 势能函数

6.4 复合模型

6.4.1 Yukawa 势能函数

6.5 分子力场
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7 量子统计
7.1 遵循量子力学的运动方程
• 体系 Schrödinger方程

𝐻Ψ = 𝐸Ψ (150)

• 粒子 Schrödinger方程

𝐻𝑖𝜙𝑖 = 𝜀𝑖𝜙𝑖 (151)

𝐸 = ∑
𝑁

𝑖
𝜀𝑖,   Ψ( ⃗𝑟1, ⃗𝑟2, …, ⃗𝑟𝑁) = ∏

𝑁

𝑖
𝜙𝑖( ⃗𝑟𝑖) (152)

• 波函数的对称性

|𝜙(𝑞1, 𝑞2)|2 = 𝜙(𝑞1, 𝑞2)𝜙∗(𝑞1, 𝑞2) (153)

波函数交换粒子对称：

𝜑𝑆(𝑞1,𝑞2) = 𝜑𝑆(𝑞2,𝑞1) (154)

𝜙𝑆 = 𝑐1[𝜙(𝑞1, 𝑞2) + 𝜙(𝑞2, 𝑞1)] (155)

波函数交换粒子反对称：

𝜑𝐴(𝑞1,𝑞2) = −𝜑𝐴(𝑞2,𝑞1) (156)

𝜙𝐴 = 𝑐2[𝜙(𝑞1, 𝑞2) − 𝜙(𝑞2, 𝑞1)] (157)

• 近独立子体系：

𝜙(𝑞1, 𝑞2) = 𝜙1(𝑞1)𝜙2(𝑞2) (158)

𝜙(𝑞2, 𝑞1) = 𝜙1(𝑞2)𝜙2(𝑞1) (159)

7.2 Bose-Einstein 统计
将体系的波函数交换任意两个粒子，得到描述同一状态的波函数，把这些波函数进行适当的线性组合，可得到

描述体系该状态的对称及反对称波函数。由对称波函数描述的体系，可以允许一个以上的粒子占据同一量子态。

Slater行列式中将有两行相同。由行列式性质，行列式值为 0

• 玻色子：自旋量子数为 0或正整数：光子、声子、2𝐻、4𝐻𝑒等

𝑛𝑖个粒子向某个能级𝜀𝑖的𝑔𝑖个量子态分布的方法数：𝐶𝑛𝑖
𝑛𝑖+𝑔𝑖−1

对应微观状态数：
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𝑊 = ∏
𝑖

𝐶𝑛𝑖
𝑛𝑖+𝑔𝑖−1 (160)

量子效应不显著时𝑔𝑖 ≫ 𝑛𝑖：

𝑊 = ∏
𝑖

𝑔𝑛𝑖
𝑖

𝑛𝑖!
(161)

• Bose-Einstein分布

𝑛𝑖 = 𝑔𝑖
𝑒𝛼𝑒𝛽𝜀𝑖 − 1

(162)

7.3 Fermi-Dirac统计
由反对称波函数描述的体系，两个粒子同时出现在同一个量子态的几率为 0，即不会有两个粒子占据同一个量
子态。（泡利不相容原理）

• 费米子：自旋量子数为半整数：电子、质子、中子、3𝐻𝑒等

𝑛𝑖个粒子向某个能级𝜀𝑖的𝑔𝑖个量子态分布的方法数：𝐶𝑛𝑖𝑔𝑖

对应微观状态数：

𝑊 = ∏
𝑖

𝐶𝑛𝑖𝑔𝑖
(163)

• Fermi-Dirac分布

𝑛𝑖 = 𝑔𝑖
𝑒𝛼𝑒𝛽𝜀𝑖 + 1

(164)

当满足非简并条件或𝑒𝛼 ≫ 1时，两种量子分布还原为 Boltzmann分布

• 动量间隔的量子态数

𝑔(d𝑝) = 4𝜋𝑉
ℎ3 𝑝2 d𝑝 (165)

• 能量间隔的量子态数

𝑔(d𝜀) = 4𝜋𝑉
ℎ3 𝑚

√
2𝑚𝜀 d𝜀 (166)

7.4 半导体中电子的分布

𝑁 = 4𝜋𝑉 (2𝑚
ℎ2 )

3
2 2
3
𝜇

3
2
0 (167)

• 费米能级
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𝐸𝐹 = 𝜇0 = ℎ2

8𝑚
(3𝑁

𝜋𝑉
)

2
3

(168)

• 费米函数

处在能量为𝜀𝑗的任何一个量子态 j中的平均电子数（电子密度）为

𝑓(𝑒) = 𝑓𝐹−𝐷 =
𝑛𝑗

𝑔𝑗
= 1

𝑒𝛼𝑒𝛽𝜀𝑗 + 1
= 1

𝑒𝛽(𝜀𝑗−𝐸𝐹) + 1
(169)

• 费米动量

0K时电子的最大动量

𝑝𝐹 = (2𝑚𝐸𝐹 )
1
2 (170)

7.5 玻色-爱因斯坦凝聚
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