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1 A Primer on Superfluid

1.1 Bose-Einstein Condensation

玻色子自旋量子数为整数，满足波色-爱因斯坦统计，费米子自旋量子数为半整数，满足费米-狄拉克统计。

玻色子可以在同一量子态上叠加，而费米子则不能（泡利不相容原理）。因此，玻色-爱因斯坦凝聚和费米-狄拉

克凝聚的物理机制不同。以下分别为两种统计的概率分布密度函数：

𝑓BE(𝐸) = 1
𝑒(𝐸−𝜇)/𝑘𝑇 − 1

(1)

𝑓FD(𝐸) = 1
𝑒(𝐸−𝜇)/𝑘𝑇 + 1

(2)

由简并态数在相空间内的总体积不变，有：

ℎ3𝑔(𝐸) d𝐸 = ℎ3𝑔(𝑝) d𝑝 = 𝒱︀4𝜋𝑝2 d𝑝 (3)

故

𝑔(𝑝) = 𝒱︀
ℎ3 4𝜋𝑝2,  𝑔(𝐸) = 𝒱︀

ℎ3 2𝜋(2𝑚)
3
2𝐸

1
2 (4)

玻色子的激发态粒子数满足（连续分布假设）

𝑁𝑒 ∼ ∫
∞

0
𝑓BE(𝐸)𝑔(𝐸) d𝐸 = 𝒱︀

ℎ3 2𝜋(2𝑚)
3
2 ∫

∞

0

𝐸
1
2

𝑒(𝐸−𝜇)/𝑘𝑇 − 1
d𝐸

= 𝒱︀
ℎ3 2𝜋(2𝑚𝑘𝑇 )

3
2Γ(3

2
) ∑

∞

𝑛=0

exp(𝑛𝜇/𝑘𝑇 )

𝑛
3
2

(5)

当𝜇 ≤ 0有收敛解，且𝜇 = 0存在临界值：

𝑁𝑐 = (2𝜋𝑚𝑘𝑇)
3
2𝒱︀

ℎ3 𝜁(3
2
) ∼ 𝑇

3
2 (6)

因此当温度降低时，该临界值也会降低，当𝑁 > 𝑁𝑐时，激发态粒子数不再随温度降低而增加，剩余的粒子

只能进入基态，形成波色-爱因斯坦凝聚。

为了方便表述，我们还可以定义一个临界温度：

𝑇𝑐 = ℎ2

2𝜋𝑚𝑘
(


 𝑁

𝜁(3
2
)𝒱︀

)




2
3

(7)

故

3
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𝑁0
𝑁

= 1 − 𝑁𝑒
𝑁

= 1 − ( 𝑇
𝑇𝑐

)

3
2 ,  𝑇 < 𝑇𝑐 (8)

图 1: 波色-爱因斯坦凝聚基态粒子数随温度变化的关系图

通过以上推导得知，当温度降低至临界温度𝑇𝑐以下时，玻色子会逐步从激发态汇聚至基态。特别的，在球

对称谐振子势阱中，随着温度降低，密度分布会从满足玻尔兹曼分布的平坦分布逐步变为中心集中的分布，最

终在𝑇 = 0时，所有玻色子都处于基态。

图 2: 著名的波色-爱因斯坦凝聚验证实验结果示意图

显然，玻色-爱因斯坦凝聚的形成需要足够大的粒子数密度和足够低的温度，有趣的是，当满足前一个条件

时，恰好满足波色子物质波的波长大于其自身距离的尺度，即玻色子物质波会发生如下的叠加：

图 3: 波色-爱因斯坦凝聚的物质波叠加示意图

由于内能和压力来自于激发态粒子数目的贡献，因此波色-爱因斯坦凝聚态的内能和压力随着温度降低而

降低，且在𝑇 = 0时，内能和压力均为零。对于热容则有：

4
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𝐶𝑉 =
{



1.93𝑁𝑘𝑇
3
2 ,  𝑇 < 𝑇𝑐

3
2
𝑁𝑘𝑇 ,       𝑇 ≫ 𝑇𝑐

(9)

该曲线在𝑇 = 𝑇𝑐处有一个一阶导数不连续的拐点，也可以说明理想波色系统中的波色-爱因斯坦凝聚可视

为三级相变：

图 4: 波色-爱因斯坦凝聚热容随温度变化曲线及液氦热容实验结果对比

而对于4He的实验结果对此进行了验证，但其热容曲线在𝑇 = 𝑇𝑐并不连续，说明其相变为二级相变，且实验

得出的临界温度和计算结果略有不同，因此氦的相变并非简单的波色-爱因斯坦凝聚，由于其粒子间存在较强相

互作用，需要更复杂的理论进行解释。

1.2 Fermi-Dirac Condensation

由于受泡利不相容原理的制约，费米子不能在同一量子态上叠加，因此费米-狄拉克凝聚的形成需要满足更

严格的条件。在𝑇 = 0时，费米-狄拉克统计的概率分布密度函数满足阶跃函数分布：

𝑓FD(𝐸) = {1,  𝐸 ≤ 𝐸𝐹 0,  𝐸 > 𝐸𝐹 (10)

其中𝐸𝐹为费米能级(Fermi Energy)。由此计算费米狄拉克凝聚的总粒子数为：

𝑁 = ∫
∞

0
𝑓FD(𝐸)𝑔(𝐸) d𝐸 = 4𝜋𝒱︀

3ℎ3 (2𝑚𝐸𝐹 )
3
2 (11)

由此可得费米能级为

𝐸𝐹 = ℎ2

2𝑚
(3𝑛

4𝜋
)

2
3 = ℏ2

2𝑚
(6𝜋2𝑛)

2
3 (12)

费米-狄拉克凝聚保证了零温下不是所有费米子都能处于基态，因此零温下具有简并的内能和压力。

图 5: 费米-狄拉克凝聚基态粒子数随温度变化的关系图
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另外我们还可以定义费米温度𝑇𝐹 = 𝐸𝐹 /𝑘 = ℏ2/(2𝑚𝑘)(6𝜋2𝑛)
2
3，当温度逐渐从零温升高，费米子会向上跃

迁，在𝑇𝐹附近，只有靠近费米能级的粒子会跃迁出费米能级，而当𝑇 ≫ 𝑇𝐹时，大部分粒子会跃迁出费米能级，

费米-狄拉克凝聚的特性逐渐消失，粒子分布倾向变为玻尔兹曼分布。当费米系统处于球对称谐振子势阱中时，

会有类似波色-爱因斯坦凝聚的现象，但因为简并压力的存在，形成费米-狄拉克凝聚时其峰值域会更宽。

1.3 Superfluidity

超流（Superfluidity）可视为一种相变。由于4He是玻色子，3He是费米子，很容易联想到两种凝聚态：波
色-爱因斯坦凝聚（Bose-Einstein Condensation）和费米-狄拉克凝聚（Fermi-Dirac Condensation），

不过两种凝聚主要用于表示量子气体的相变行为，而对于量子液体组成的波色/费米系统（即存在较强粒子间相

互作用），则分别需要独立的超流相变理论解释。

超流氦（Superfluid Helium）是著名的展现宏观超流性的物质。4He有两种液相：He I和He II，He I为
正常液相，He II为超流相，也被称为超流氦。超流性一词源于苏联物理学家卡皮查（Kapitza）的实验——超流

氦能够在极小狭缝中流动（regardless of viscosity），故类比超导（regardless of resistance）赋名；同时超流氦

还具有超高的导热能力，导热系数为铜的106倍。另外3He也存在超流转变，且存在3He A、3He B两种超流相。

图 6: 4He和3He相图

1.4 Quantized Vortices

1.5 Second Sound Waves

1.6 Kelvin Waves and Vortex Reconnections

1.7 Quantum Turbulence

1.8 Physical Properties

• https://www.mas.ncl.ac.uk/helium/

• https://htess.com/hepak/
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2 Dynamics Description

2.1 Microscopic

2.1.1 The Gross-Pitaevskii Equation

对于玻色系统，考虑两体相互作用，因此在哈密顿量的势能项中需要额外加上相互作用能，在单粒子体系

下表示为薛定谔方程(Schrödinger Equation)则有：

𝑖ℏ𝜕Ψ
𝜕𝑡

= 𝐻̂Ψ = (− ℏ2

2𝑚
∇2+𝑉 + 𝑔|Ψ|2)Ψ (13)

其中

𝑔 = 4𝜋ℏ2𝑎𝑠
𝑚

,    𝑎𝑠为散射半径 (14)

该方程称之为Gross-Pitaevskii Equation(GPE)，由于额外增加了非线性项𝑔|Ψ|2 Ψ，GPE的求解一般

需要某些简化操作。类似的非线性薛定谔方程也常常出现在等离子体、光学领域。

另外我们也可以计算能量和动量的本征值：

𝐸 = ∫
𝐶

Ψ∗𝐻̂Ψd3𝒓 = ∫
𝐶

ℏ2

2𝑚
|∇Ψ|2 + 𝑉 |Ψ|2 + 1

2
𝑔|Ψ|4

⏟
ℰ︀

d3𝒓 (15)

𝑷 = ∫
𝐶

Ψ∗𝑝Ψd3𝒓 = 1
2
𝑖ℏ ∫

𝐶
Ψ∇Ψ∗ − Ψ∗∇Ψ⏟

𝓟︀

d3𝒓 (16)

【涉及操作∫ Ψ∗∇2Ψd3𝒓 = ∫ ∇ ⋅ (Ψ∗Ψ) − |∇Ψ|2 d3𝒓】

2.1.1.1. Steady Gross-Pitaevskii Equation

不依赖于时间的上述 GPE的解可以简化为

Ψ = 𝜓𝑒−𝑖𝜇𝑡/ℏ (17)

因此 GPE亦可简化为：

𝜇𝜓 = (− ℏ2

2𝑚
∇2+𝑉 + 𝑔|Ψ|2)𝜓 (18)

化学势𝜇可作为特征值，满足：

𝜇 = 𝜕𝐸
𝜕𝑁

=
𝐸kin + 𝐸pot + 2𝐸int

𝑁
(19)

2.1.1.2. Unsteady Gross-Pitaevskii Equation and Fluid Description

对(13) 分别左右两侧作用Ψ∗，消掉共轭项得：

𝑖ℏ 𝜕
𝜕𝑡

(Ψ∗Ψ) = − ℏ2

2𝑚
(Ψ∗∇2Ψ − Ψ∇2Ψ∗) = − ℏ2

2𝑚
∇ ⋅ (Ψ∗∇Ψ − Ψ∇Ψ∗) (20)

7
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由高斯定理可得：

𝑖ℏ 𝜕
𝜕𝑡

∫
𝐶

Ψ∗Ψd3𝒓 = − ℏ2

2𝑚
∫

𝜕𝐶
(Ψ∗∇Ψ − Ψ∇Ψ∗) d𝑺 (21)

即连续性方程(Continuity Equation)：

𝜕𝑛
𝜕𝑡

+ ∇ ⋅ 𝒋 = 0 (22)

其中𝑛 = Ψ∗Ψ = |Ψ|2,   𝒋 = 𝑛𝒗𝑠 = 𝑖ℏ
2𝑚

(Ψ∇Ψ∗ − Ψ∗∇Ψ)

取

Ψ(𝒓, 𝑡) = 𝜓(𝒓, 𝑡)𝑒𝑖𝜙(𝒓,𝑡) (23)

由此我们可以定义流速

𝒗𝑠 = 𝑖ℏ
2𝑚|Ψ|2

(Ψ∇Ψ∗ − Ψ∗∇Ψ) = 𝓟︀
𝑀

= ℏ
𝑚

∇𝜙 = ℏ
𝑖𝑚

∇ ln( Ψ√
𝑛

) (24)

可见波色流体的流速为梯度场，∇ × 𝒗𝑠 = 0，因此波色流体为无旋流体。

用相位𝜙来表示 GPE，则可得：

𝑖ℏ(𝜕𝜓
𝜕𝑡

+ 𝑖𝜓𝜕𝜙
𝜕𝑡

) = (− ℏ2

2𝑚
(∇2−(∇𝜙)2 + 𝑖∇2𝜙 + 2𝑖∇𝜙 ⋅ ∇) + 𝑉 + 𝑔𝜓2)𝜓 (25)

取实部有：

ℏ𝜕𝜙
𝜕𝑡

= −(− ℏ2

2𝑚
1
𝜓

∇2𝜓 + ℏ2

2𝑚
(∇𝜙)2 + 𝑉 + 𝑔𝜓2) (26)

两边同时求梯度后，代入连续性方程即得到超流体的欧拉方程(Euler Equation)：

𝑚𝜕𝒗𝑠
𝜕𝑡

= −∇(− ℏ2

2𝑚
∇2√𝑛√

𝑛
+ 1

2
𝑚𝑣2 + 𝑉 + 𝑔𝑛) (27)

标准形式：

𝑚𝑛(𝜕𝒗𝑠
𝜕𝑡

+ 𝒗𝑠 ⋅ ∇𝒗𝑠) = −∇

(




− ℏ2

4𝑚
𝑛∇2 ln 𝑛

⏟
𝑃 ′

+ 𝑔𝑛2

2⏟
𝑃 )





− 𝑛∇𝑉 (28)

也可以写成指标形式：

𝑚𝜕𝑗𝑖
𝜕𝑡

+ 𝜕Πik
𝜕𝑥𝑘

= −𝑛𝜕𝑉
𝜕𝑥𝑖

(29)

Πik = − ℏ2

4𝑚2 [ 𝜕Ψ
𝜕𝑥𝑖

𝜕Ψ∗

𝜕𝑥𝑘
− Ψ 𝜕2Ψ∗

𝜕𝑥𝑖𝜕𝑥𝑘
+ 𝑐.𝑐.] + 𝑔𝑛2

2
𝛿ij (30)

8



Jingyuan XU Notes on Superfluid Hydrodynamics

𝑃为常规下的压强，𝑃 ′为量子压强(Quantum Pressure)。它的产生同零点能——由于不确定性原理，粒

子不能完全静止，因此即使在零温下，粒子仍然具有动能，在凝聚体系中表现为一种抵抗外界形变的压力。式

(22) 和(28) 即为超流体动力学方程(Superfluid Hydrodynamic Equations)。

对于常规压强和量子压力的占优情况，我们可以引入无量纲量
𝑃 ′

𝑃
∼ ℏ2

𝑔𝑚𝑛𝜉2来进行定性反映，当
𝑃 ′

𝑃
≪ 1时，

可忽略量子压强，由此也引申出𝜉的含义——愈合长度(Healing Length)，用于度量粒子间相互作用从无到有

的分界，定义如下：

𝜉 = ℏ
√𝑔𝑚𝑛

(31)

对于 BEC，𝜉 ∼ 10−6m，对于超流氦(4He II)，𝜉 ∼ 10−10m，该尺度与涡旋核心的尺寸有关。

2.1.1.3. Solution of Steady GPE

引用 Gross-Pitaevskii 方程：

𝑖ℏ𝜕Ψ
𝜕𝑡

= (− ℏ2

2𝑚
∇2+𝑉 + 𝑔|Ψ|2)Ψ (32)

由于其非线性项，直接对其求解存在困难，因此需要考虑某些简单的边界条件或方程简化操作。

2.1.1.3.1.均匀凝聚体（无限大区域）

不考虑外加势场且波函数在空间均匀分布，GPE简化为

𝜇𝜓 = 𝑔|𝜓|2 𝜓 (33)

全空间解为𝜓 = √𝜇/𝑔 = 𝜓0，此时系统粒子各处密度、数目均匀分布。

2.1.1.3.2.一维半无限大区域

考虑一维区域的外加势场

𝑉 = {∞,  𝑥 < 0
0,   𝑥 ≥ 0 (34)

显然在无穷远处𝜓 = 𝜓0，内部区域 GPE简化为：

𝜇𝜓 = − ℏ2

2𝑚
𝜕2

𝜕𝑥2 𝜓 + 𝑔|𝜓|2 𝜓 (35)

考虑边界条件可解得：

𝜓(𝑥) = 𝜓0 tanh(𝑥
𝜉
) (36)

而通常的薛定谔方程则解得：

𝜓(𝑥) = 𝜓0 sin(𝑥
𝐿

) (37)

类似可对比表示一维无限深方势阱的情况。

9
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2.1.1.3.3.三维球谐振子势

在外加三维球谐振子势情况下，有：

𝑉 = 1
2
𝑚𝜔2𝑟2 (38)

因此 GPE简化为：

𝜇𝜓 = − ℏ2

2𝑚
( 1

𝑟2 ) 𝜕
𝜕𝑟

𝑟2𝜕
𝜕𝑟

𝜓 + 1
2
𝑚𝜔2𝑟2𝜓 + 𝑔|𝜓|2 𝜓 (39)

若不考虑相互作用(𝑔 = 0)，则可解得

𝜓(𝒓) = 𝑁1/2

𝜋3/4𝑙3/2
𝑟

exp(− 𝑟2

2𝑙2𝑟
) (40)

描述为密度分布：

𝑛(𝒓) = 𝑁
𝜋3/2𝑙3𝑟

exp(−𝑟2

𝑙2𝑟
) (41)

表现为高斯波函数，其中𝑙𝑟 = √ℏ/𝑚𝜔为谐振子特征长度。

倘若考虑相互作用，则需区分斥力(𝑔 > 0)和引力(𝑔 < 0)两种情况。

当𝑔 > 0时，且满足𝑁𝑎𝑠/𝑙𝑟 ≫ 1时（𝑎𝑠为散射长度），排斥相互作用能远大于基态粒子的动能，因此可忽略

动能项——该近似称为托马斯费米近似(Thomas-Fermi approximation)，GPE简化为：

𝜇𝜓 = 1
2
𝑚𝜔2𝑟2𝜓 + 𝑔|𝜓|2 𝜓 (42)

解得当𝑟 ≤
√2𝜇/𝑚

𝜔
时有：

𝜓(𝒓) =
√




𝜇 − 1
2
𝑚𝜔2𝑟2

𝑔
(43)

当𝑟 >
√2𝜇/𝑚

𝜔
，𝜓(𝒓) = 0， 记𝑅𝑟 =

√2𝜇/𝑚
𝜔

为托马斯-费米半径(Thomas-Fermi radius)。 描述为密度

分布：

𝑛(𝒓) =

{


𝜇

𝑔
(1 − 𝑟2

𝑅2
𝑟
),  𝑟 ≤ 𝑅𝑟

0,               𝑟 > 𝑅𝑟

(44)

可以类似表示椭球谐振子势的情况：

𝑛(𝒓) =

{


𝜇

𝑔
(1 − 𝑥2

𝑅2
𝑥

− 𝑦2

𝑅2
𝑦

− 𝑧2

𝑅2
𝑧
),  椭球内

0,                              椭球外
(45)

现在我们以谐振子长度𝑙𝑟为基准球面，作以𝑅𝑟为半径球面的调和球面，可知其半径恰为𝜉 = 𝑙2𝑟/𝑅𝑟，进一步

说明了愈合长度的物理意义。
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无论𝑔的符号，若满足|𝑁𝑎𝑠/𝑙𝑟| < 1，则无法忽略动能项，此时可采用拟设(ansatz)进行近似求解，假设波

函数为高斯波函数形式

𝜓(𝒓) = 𝑁1/2

𝜋3/4𝜎3/2𝑙3/2
𝑟

exp(− 𝑟2

2𝜎2𝑙2𝑟
) (46)

其中𝜎为变分参数。将其代入能量表达式：

𝐸(𝜎) = ℏ𝜔𝑁

[


 3

4𝜎2⏟
𝑇

+ 3𝜎2

4⏟
𝑉

+ 1√
2𝜋

𝑁𝑎𝑠
𝑙𝑟

1
𝜎3

⏟
𝑈 ]





(47)

可得整个系统能量随𝜎变化而变化，且动能和相互作用能均随𝜎减小而增大，势能则相反。整个系统应于能
量取极小值点处达到平衡，因此对𝐸(𝜎)求导并令其为零(𝜎 > 0)，可得：

𝜎5 − 𝜎 = 𝑁𝑎𝑠
𝑙𝑟

√2
𝜋

(48)

• 若系统恰好无相互作用，即𝑔 = 0 = RHS，则有𝜎 = 1。

• 若系统表现为斥力，则𝑔 > 0, RHS > 0，在𝜎 > 1的区间内有一个极小值点，此时取𝜎min，且𝜎min随𝑁𝑎𝑠/𝑙𝑟增
大而增大，说明斥力相互作用会使凝聚体膨胀。当𝑔接近于 1时，此时分布更接近托马斯-费米模型的分布。

• 若系统表现为引力，则𝑔 < 0, RHS < 0，在0 < 𝜎 < 1的区间内存在极小值点，此时取𝜎min，且𝜎min随|𝑁𝑎𝑠/𝑙𝑟|
增大而减小，说明引力相互作用会使凝聚体收缩。当𝑁𝑎𝑠/𝑙𝑟 < −0.671时，方程无正实数解，说明引力相互作
用过强，凝聚体坍缩。

图 7: 变分参数𝜎随无量纲相互作用强度𝑁𝑎𝑠/𝑙𝑟变化曲线
𝑁𝑎𝑠/𝑙𝑟 = [−1, −0.75, −𝟎.𝟔𝟕, −0.5, −0.25, 0, 0.5, 1]

2.1.1.3.4.各向异性势与降维

考虑𝑅𝑧 ≫ 𝑅𝑥, 𝑅𝑦以及𝑅𝑧 ≪ 𝑅𝑥, 𝑅𝑦的椭球面谐振子势，可分别简化得到一维和二维的凝聚体。
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图 8: 简化为不同维数的谐振子势阱形状

降维近似的好处在于可以通过分离变量法将三维GPE解耦成更低维度的GPE，进而简化求解难度。具体

方式为：对于被降低的维度，其ℏ𝜔𝑖 ≫ 𝜇，因此该维度的含时量可忽略不计，另外该维度波函数可预先拟设为高
斯分布，在求解时分离变量独立求解。

• 一维：波函数满足：

𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓𝑧(𝑧, 𝑡)𝐺𝑥(𝑥)𝐺𝑦(𝑦) (49)

满足高斯分布：

𝐺𝑛(𝑛) = 1
(𝜋𝑙2𝑛)1/4 exp( 𝑛2

2𝑙2𝑛
),    𝑛 = 𝑥, 𝑦 (50)

满足一维 GPE：

𝜇1D𝜓𝑧 = − ℏ2

2𝑚
d2

d𝑧2 𝜓𝑧 + 1
2
𝑚𝜔2

𝑧𝑧2𝜓𝑧 + 𝑔1D|𝜓𝑧|2𝜓𝑧 (51)

且有𝜇1D = 𝜇 − (ℏ𝜔𝑥)/2 − (ℏ𝜔𝑦)/2，𝑔1D = 𝑔/(2𝜋𝑙𝑥𝑙𝑦)

• 二维：波函数满足：

𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓⊥(𝑥, 𝑦, 𝑡)𝐺𝑧(𝑧) (52)

满足高斯分布：

𝐺𝑧(𝑧) = 1
(𝜋𝑙2𝑧)

1/4 exp( 𝑧2

2𝑙2𝑧
) (53)

满足一维 GPE：

𝜇2D𝜓⊥ = − ℏ2

2𝑚
( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 )𝜓⊥ + (1
2
𝑚𝜔2

𝑥𝑥2 + 1
2
𝑚𝜔2

𝑦𝑦2)𝜓⊥ + 𝑔2D|𝜓⊥|2𝜓⊥ (54)

且有𝜇2D = 𝜇 − (ℏ𝜔𝑧)/2，𝑔2D = 𝑔/(2𝜋𝑙𝑧)

一维和二维的凝聚体有关于相变和稳定性的性质相较三维情况存在差异，如一维凝聚体不会发生坍缩；二

维自由波色气体无法发生 BEC因此不存在凝聚体。

2.1.1.4. The Vortical Solution of GPE

由前文可知波色流体为无旋流体，∇ × 𝒗𝑠 = 0，但实验中发现超流体可以形成涡旋，这与经典流体力学中
的涡旋概念不同。考虑 GPE的涡旋解Ψ = 𝜓𝑒𝑖𝑆，在柱坐标系下，表示为：

12
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Ψ(𝒓) = 𝜓(𝑟, 𝑧)𝑒𝑖𝑠𝜑 (55)

其中𝑠 ∈ ℤ，用于保证波函数的单值性，此时超流体速度表示为：

𝒗𝒔 = ℏ
𝑚

𝑠∇𝜑 = ℏ
𝑚

𝑠
𝑟
𝒆𝝋 (56)

速度环量为：

Γ = ∮
𝐶

𝒗𝒔 ⋅ d𝒍 = ℏ
2𝜋𝑚

∮ ∇𝜑 ⋅ d𝒍 = 𝑠𝜅, 𝜅 = ℏ
𝑚

(57)

因此涡旋的环量并非为经典流体中的连续随机值，而是为𝜅的整数倍，称之为环量量子化(the Quantiza

tion of the Circulation)。𝑠被称为涡荷(charge of the vortex)，当𝑠 ≠ 0时，由于𝒗𝒔 ∼ 1
𝑟
，因此在𝑟 = 0处

速度会发散，波函数在该点必须为零，即涡核(Vortex Core)处密度为零。𝑠的正负性代表速度旋转的顺时针/

逆时针方向，𝑠的大小表征区域内部奇点的个数（若将奇点的等价类连成线，则可以得到一族离散的涡线，被称
为量子化涡线(Quantized Vortex Line)），由此生成的涡旋是离散的，因此也被称为量子化涡旋(Quantized 

Vortice)。该现象可以简单等价于超流的涡旋区域是一个复连通域(Multiply-Connected Domain)(s-连通

空间)，而非单连通域(Simply-Connected Domain)。涡核也称为拓扑缺陷(Topological Defects)

图 9: 量子化涡线示意图

由此我们可以得到此时超流体速度的旋度：

∇ × 𝒗𝒔 = 𝑠𝜅𝛿2(𝒓⊥)𝒆𝒛 (58)

以及角速度：

𝛀 = 1
2
𝑠𝜅𝛿2(𝒓⊥)𝒆𝒛 (59)

其中𝒓⊥为涡线所在的平面位置矢量，delta函数：

𝛿2(𝒓⊥) = {1,  𝒓⊥ = 0
0,  𝒓⊥ ≠ 0 (60)

下面对几种不同运动状态的角速度进行对比：

• (i) 刚体旋转：

𝒗 = 𝛀 × 𝒓 ⟹ 𝑣 ∼ 𝑟 (61)
• (ii) 量子化涡旋：

13
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𝛀 = ∇ × 𝒗, 𝑣 ∼ 1
𝑟

(62)

• (iii) 龙卷风：

𝑣 ∼
{

𝑟, 0 < 𝑟 ≪ 𝑎

1
𝑟
, 𝑟 ≫ 𝑎 ,  𝑎为龙卷风核心半径 (63)

图 10: 不同流体的角速度分布对比图

可见(i)和(ii)的区别在于流体的旋转方式不同，(ii)中流体微元并未发生(i)中的自转，而是绕涡线公转，因

此(ii)中流体的角速度在涡线处具有奇点。若将奇点尺寸放大则可以比拟成龙卷风的核心，即可得到(iii)的分布。

从这个尺度来看，量子化涡旋也可视为量子龙卷风。

2.1.1.5. Vortex Core

在𝑧 = const条件下，将涡旋解形式代入无外势的 GPE，可得到：

𝜇𝜓 = − ℏ2

2𝑚
1
𝑟

𝜕
𝜕𝑟

(𝑟𝜕𝜓
𝜕𝑟

) + ℏ2𝑠2

2𝑚𝑟2 𝜓 + 𝑔𝜓3 (64)

记𝜓 = √𝑛0𝑓(𝜂), 𝜂 = 𝑟
𝜉
进行无量纲化，𝑛0为平衡时密度，上式转化为：

1
𝜂

d
d𝜂

(𝜂d𝑓
d𝜂

) + (1 − 𝑠2

𝜂2 )𝑓 − 𝑓3 (65)

𝑓随𝜂, 𝑠的变化表示密度随距离、量子涡旋数目变化的关系，边界条件为：

𝑓(0) = 0, 𝑓(∞) = 1 (66)

数值解如下：
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图 11: 不同涡荷𝑠下（实线𝑠 = 1，虚线𝑠 = 2）的𝑓随𝜂分布曲线

可见当𝜂 → 0，有𝑓 → 𝜂|𝑠|。该图像反映了随着距离涡核中心的增大，密度逐渐恢复至均匀分布的过程，且

涡荷越大，密度恢复越缓。𝑠 = 1时涡核的半径约为 5倍愈合长度，即𝑎 ≈ 5𝜉。一个可用的估计解为：

𝑓(𝜂) ≈ 1 − 1
1 + 𝜂2 (67)

如果存在外部势场（如三维球谐振子势），密度分布则会呈现如下情景：

图 12: 在谐振子势阱中密度分布曲线

可见奇点处，即涡核处，密度为零，且随着距离涡核中心的增大，密度逐渐恢复至谐振子势阱中的分布。一

个估计分布为：

𝑓(𝒓) =

{




(1 − 𝑥2

𝑅2
𝑥

− 𝑦2

𝑅2
𝑦

− 𝑧2

𝑅2
𝑧
)(1 − 1

1 + 𝜂2 ),  𝑟 ≤ 𝑅𝑟

0,               𝑟 > 𝑅𝑟

(68)

15



Jingyuan XU Notes on Superfluid Hydrodynamics

2.1.1.6. Vortex Energy and Angular Momentum

在柱坐标下，假定涡线长度为𝑙，区域半径为𝑅，涡核半径为𝑎，则涡旋能量用其动能表示：

𝐸kin = ∫
𝐶

1
2
𝑛𝑚𝑣2

𝑠d3𝒓 = ℏ2𝑠2

2𝑚
∫

𝐶

𝑛(𝒓)
𝑟2 d3𝒓 ≈ 𝜋𝑙𝑛0ℏ2𝑠2

𝑚
∫

𝑅

𝑎

d𝑟
𝑟

= 𝜋𝑙𝑛0ℏ2𝑠2

𝑚
ln 𝑅

𝑎
(69)

涡旋角动量：

𝐿𝑧 = ∫
𝐶

𝑛𝑚𝑟𝑣𝑠d3𝒓 ≈ 2𝜋𝑙𝑛0ℏ𝑠 ∫
𝑅

𝑎
𝑟 d𝑟 = 𝜋𝑙𝑛0ℏ𝑠(𝑅2 − 𝑎2) ≈ 𝜋𝑙𝑛0ℏ𝑠𝑅2 = 𝑠𝑁ℏ (70)

由于涡旋能量𝐸kin ∼ 𝑠2，带有更多涡荷的涡旋能量更高，因此不稳定，倾向于分裂为多个单涡荷涡旋，即

往往出现𝑠 = ±1的情况，此时的𝐸kin也被称为激发能量。达到激发能量的临界角速度为：

Ω𝑐 = 𝐸kin
𝐿𝑧

= ℏ
𝑚𝑅2 ln(𝑅

𝑎
) = 𝜅

2𝜋𝑅2 ln(𝑅
𝑎

) (71)

该式来源于自由能𝐹 = 𝐸 − Ω𝐿𝑧的最小化：

Δ𝐹 = 𝐸kin − Ω𝐿𝑧 ≤ 0 ⟹ Ω ≥ Ω𝑐 = 𝐸kin
𝐿𝑧

(72)

对于超流氦(4He II, 𝑅 = 0.01m)，Ω𝑐 ∼ 3 × 10−3s−1，更多涡荷的临界角速度更高。

图 13: 实验观测到随着临界角速度增大，超流氦不同涡荷𝑠下的量子涡旋

图 14: 实验观测到 BEC的量子涡旋

另外我们可以定义一个涡旋(面)密度(number of vortices per unit area)𝑛𝑣和涡线(体)密度(length of 

vortex line per unit volume)𝐿：
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𝑛𝑣 = 𝐿 = 2Ω
𝜅

≈ 2000Ω lines cm−2 (73)

即超流体的涡度大小为：

|∇ × 𝒗𝒔| = 2Ω = 𝜅𝐿 (74)
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2.2 Mesoscopic

2.2.1 Vortice Filament Model

2.3 Macroscopic

2.3.1 Laudau Two-Fluid Model

2.3.2 HVBK Model

2.3.2.1. Vinen’s Equantion

Vinen提出了以下描述涡线密度演化的方程：

𝜕𝐿
𝜕𝑡

+ 𝛁 · (𝒗𝐿𝐿) = 𝒫︀ − 𝒟︀ + 𝑔(𝒗𝑛𝑠) (75)

由已知实验可以唯象地导出：

𝜕𝐿
𝜕𝑡

+ 𝛁 · (𝒗𝐿𝐿) = 𝒜︀𝑛|𝒗𝑛𝑠|
𝑛𝐿2−𝑛/2 − ℬ︀𝑛𝐿2 + 𝛾𝑣|𝒗𝑛𝑠|

5/2 (76)

其中右式第一项表示产生项，右式第二项表示耗散项，该两项存在不同整数幂次（𝑛 = 1, 2, 3）的三种可能解
（在稳态情况下均可合理满足结果）右侧第三项的存在与否表示是否考虑涡线密度的弛豫性，若存在则需考虑。

当不考虑第三项时，可以得到稳态涡线密度和相对速度的关系：

𝐿1/2
0 = (𝒜︀𝑛

ℬ︀𝑛
)

1/𝑛

|𝒗𝑛𝑠| (77)

2.3.3 Homogeneous Superfluid Turbulence Model

2.3.4 One-Fluid Model

3 Special Topics

3.1 Rayleigh-Benárd Convection

3.2 Counterflow

3.3 Taylor-Couette Flow
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